Fingerprints in Compressed Strings

(In Proc. WADS 2013)

Philip Bille¹, Patrick Hagge Cording¹, Inge Li Gørtz¹, Benjamin Sach², **Hjalte Wedel Vildhøj**¹ and Søren Vind¹

¹Technical University of Denmark, DTU Compute, {phbi,phaco,inge,hwvi,sovi}@dtu.dk ²University of Bristol, Department of Computer Science, ben@cs.bris.ac.uk

October 10, 2013

WCTA 2013, Jerusalem

1/14

"Karp-Rabin fingerprints can be computed efficiently on compressed strings."

Straight Line Programs

Compression model for strings

- Compression is modelled as a *Straight Line Program* (SLP).
- ► An SLP *G* is a grammar in Chomsky normal form.
- ► *G* consists of production rules $X_1, ..., X_n$ of the form $X_i = X_l X_r$ (nonterminal) or $X_i = a$ (terminal) representable as a DAG.
- ► A node $\nu \in G$ produce a unique string $S(\nu)$ of length $|S(\nu)|$.

Karp-Rabin Fingerprints

Definition

The Karp-Rabin Fingerprint of a string S is defined as

$$\phi(S) = \sum_{k=1}^{|S|} S[k]c^k \bmod p \,,$$

where $p = O(2^w)$ is a sufficiently large prime and $c \in \mathbb{Z}_p$ is chosen uniformly at random. Storing a fingerprint requires constant space.

$$S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ a & b & a & b & b & b & a & b \\ = & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ \phi(S[2,5]) = 1c^{1} + 0c^{2} + 1c^{3} + 1c^{4} \mod p$$

Karp-Rabin Fingerprints

Key properties

Composition

Given any two of $\phi(S[i,j])$, $\phi(S[j+1,k])$ and $\phi(S[i,k])$, the remaining fingerprint can be computed in O(1) time.

Collisions are very unlikely If $S[i,j] \neq S[i',j']$ then with high probability $\phi(S[i,j]) \neq \phi(S[i',j'])$.

The SLP Toolbox

Useful primitives on SLPs

- Decompress a prefix or suffix of a node in linear time. (Gasieniec, Kolpakov, Potapov and Sant. In Proc. 15th DCC, 2005)
- Access a random symbol S[i] in O(log N) time.
 (Bille, Landau, Raman, Sadakana, Satti, Weimann. In Proc. 22nd SODA, 2011)
- Decompress a substring incident to a bookmark in linear time. (Gagie, Gawrychowski, Kärkkäinen, Nekrich, Puglisi. In Proc. LATA, 2012)

Our additions to the toolbox:

Fingerprints

► Compute φ(S[i,j]) in O(log N) time (or in O(log log N) time if the SLP is "linear")

Longest Common Prefixes / Extensions

► Compute LCP(i,j) in O(log N log ℓ) time (or in O(log ℓ log log ℓ + log log N) time if SLP is "linear")

Many applications: Approximate String Matching, Longest Common Substring, Palindromes, Tandem Repats, etc.

Main Ideas

We only need to look at prefixes

- ► Fingerprint composition means that it is sufficient to be able to compute fingerprints for prefixes of *S*, i.e., φ(S[1, i]).
- ► Subtracting two prefix fingerprints, we can obtain any substring fingerprint φ(S[i, j]) in O(1) time.

Compose prefix fingerprint during a random access traversal

- Augment the SLP with additional information, e.g., each node stores its fingerprint.
- Compose $\phi(S[1, i])$ from fingerprints of selected substrings of S[1, i].
- Obtain these fingerprints from a random access traversal of the SLP and the resulting root-to-leaf path.

Fingerprints in O(h) time

A simple solution

Data structure

Composing $\phi(S[1,i])$ in O(h) time

- Traverse the SLP for S[i] from the root, comparing i to the substring length at each node to determine the path.
- If following a right edge, add the fingerprint for the string generated by the left child to the composed fingerprint.

Fingerprints in $O(\log N)$ time

Theorem (Bille et al., SODA 2011)

A random access query for S[i] in an SLP can be performed in $O(\log N)$ time and O(n) space, also retrieving the sequence of $O(\log N)$ <u>heavy paths</u> visited on the root-to-leaf path.

Composing $\phi(S[1, i])$ in $O(\log N)$ time

- Perform random access query for S[i], and for each visited heavy path, add fingerprint for all left-hanging nodes in constant time.
- Store fingerprints for all left-hanging heavy path suffixes.

Linear Straight Line Programs

Almost a normal SLP, but with two differences:

- Allow the root to have *k* children, denoted r_1, \ldots, r_k .
- Restrict the right child of all other internal nodes to be a leaf.

Motivation:

- Models LZ78 compression scheme with O(1) overhead.
- Can be converted into a normal SLP of at most double size.

Fingerprints in $O(\log \log N)$ time

Root children in Linear SLP

- ► The start position of root child r_q is the sum of string lengths for children on the left, $B_q = \sum_{p=1}^{q-1} |S(r_p)|$.
- ▶ Data structure stores $\phi(S(r_i))$ and $\phi(S[1,B_i])$ $(i \in 1,...,k)$.

Composing $\phi(S[1, i])$ in $O(\log \log N)$ time

- Find the predecessor B_j of *i* in the set $\{B_1, \ldots, B_k\}$.
- Compose $\phi(S[1, i])$ from two fingerprints in constant time:
 - Fingerprint $\phi(S[1, B_j])$ for a string ending in r_{j-1} (which is stored).
 - Fingerprint $\phi(S[B_j + 1, i])$ for a prefix of a string generated by r_j .

Linear Straight Line Programs

All prefixes of S(v) fully generated by other nodes (for non-root node v).

- Store prefix relationships for non-root nodes in Linear SLP as parent relationship in a dictionary tree of size O(n).
- ► Can find node generating *m*-length prefix of S(r_j) in O(1) time using level ancestor data structure.

Longest Common Prefixes / Extensions

Preprocess a Straight Line Program (SLP) G of size n producing a string S of length N to support LCP queries:

• LCP $(i,j) = \max \ell$ such that $S[i, i + \ell] = S[j, j + \ell]$.

Theorem

There are data structures solving the LCP problem on SLPs in

- O(n) space and query time $O(\log \ell \log N)$
- ► O(n) space and query time $O(\log \ell \log \log \ell + \log \log N)$ if G is a Linear SLP

The Takeaway Message

"Karp-Rabin fingerprints can be computed efficiently on compressed strings."

Open Problems

- Other basic primitives on SLPs?
- Bookmarked fingerprints on unbalanced SLPs?
- LCP queries in same time as random access?

The Takeaway Message

"Karp-Rabin fingerprints can be computed efficiently on compressed strings."

Open Problems

- Other basic primitives on SLPs?
- Bookmarked fingerprints on unbalanced SLPs?
- LCP queries in same time as random access?

Thank you!