=
|
=

i

Fingerprints in Compressed Strings

(In Proc. WADS 2013)

Philip Bille!, Patrick Hagge Cording’, Inge Li Ggrtz',
Benjamin Sach?, Hjalte Wedel Vildhgj' and Sgren Vind!

!Technical University of Denmark, DTU Compute, {phbi ,phaco, inge,hwvi,sovi}@dtu.dk
2University of Bristol, Department of Computer Science, ben@cs.bris.ac.uk

October 10, 2013

WCTA 2013, Jerusalem

WARWICK

hwv.dk 1/14

The Takeaway Message

“Karp-Rabin fingerprints can be
computed efficiently on compressed
strings.”

Straight Line Programs

Compression model for strings
» Compression is modelled as a Straight Line Program (SLP).
» An SLP G is a grammar in Chomsky normal form.

» G consists of production rules X, ..., X, of the form X; = XX,

(nonterminal) or X; = a (terminal) representable as a DAG.
» A node v € G produce a unique string S(v) of length [S(v)|.

/\ /\
P G A

X5 X3 Xa X3

(\U expandsinto— J\ J\ Y\)

X1 X5 X1 X5 X0 X0 X1 X5

b BE3425%:

a

hwv.dk

Karp-Rabin Fingerprints
Definition
The Karp-Rabin Fingerprint of a string S is defined as
IS]

6(8) = 3 [kl mod p.
k=1

where p = O(2") is a sufficiently large prime and c € Z, is chosen

uniformly at random. Storing a fingerprint requires constant space.

1 2 3 4 5 6 7 8
S= ababbbahb

01011101

W

#(S[2,5]) = 1ct + 0c? + 1c + 1c¢* mod p

hwv.dk

Karp-Rabin Fingerprints
Key properties

Composition

Given any two of ¢(S[i,j]), #(Sj + 1, k]) and ¢(S[i, k]), the remaining
fingerprint can be computed in O(1) time.

12 4 s
S= ab b b
= 01 11

¢(S[2,5]) #(5[6,8])

¢(S[2,8])

Collisions are very unlikely

If S[i,j] # S[i’,j’] then with high probability ¢(S[i,j]) # o(S[i’,j']).

hwv.dk

The SLP Toolbox

Useful primitives on SLPs

» Decompress a prefix or suffix of a node in linear time.
(Gasieniec, Kolpakov, Potapov and Sant. In Proc. 15th DCC, 2005)

> Access a random symbol S[i] in O(log N) time.
(Bille, Landau, Raman, Sadakana, Satti, Weimann. In Proc. 22nd SODA, 2011)

» Decompress a substring incident to a bookmark in linear time.
(Gagie, Gawrychowski, Karkkainen, Nekrich, Puglisi. In Proc. LATA, 2012)

Our additions to the toolbox:
Fingerprints
» Compute ¢(S[i,j]) in O(logN) time
(or in O(loglogN) time if the SLP is “linear”)
Longest Common Prefixes / Extensions
» Compute LCP(i,j) in O(logNlog¢) time
(or in O(log ¢loglog ¢ + loglog N) time if SLP is “linear”)

Many applications: Approximate String Matching, Longest Common
Substring, Palindromes, Tandem Repats, etc.

hwv.dk

6/14

Main Ideas

We only need to look at prefixes

» Fingerprint composition means that it is sufficient to be able to
compute fingerprints for prefixes of S, i.e., ¢(S[1,1]).

» Subtracting two prefix fingerprints, we can obtain any substring
fingerprint ¢(S[i,j]) in O(1) time.

Compose prefix fingerprint during a random access traversal

» Augment the SLP with additional information, e.g., each node
stores its fingerprint.

» Compose ¢(S[1,i]) from fingerprints of selected substrings of S[1, .

» Obtain these fingerprints from a random access traversal of the
SLP and the resulting root-to-leaf path.

hwv.dk 7/ 14

Fingerprints in O(h) time

A simple solution

Data structure

N/

v.<—— Stores ¢(S(v)), [S(V)|

¢

w_<«—— Stores ¢(S(w)), |[S(w)|

Stores ¢(S(u)), |S(u)] 7u\ 2\

Composing ¢(S[1,1]) in O(h) time
» Traverse the SLP for S[i] from the root, comparing i to the
substring length at each node to determine the path.

» If following a right edge, add the fingerprint for the string
generated by the left child to the composed fingerprint.

hwv.dk

Fingerprints in O(log N) time

Theorem (Bille et al., SODA 2011)

A random access query for Sli] in an SLP can be performed in O(logN)
time and O(n) space, also retrieving the sequence of O(log N) heavy paths
visited on the root-to-leaf path.

Composing ¢(S[1,i]) in O(logN) time
» Perform random access query for S]i], and for each visited heavy
path, add fingerprint for all left-hanging nodes in constant time.
» Store fingerprints for all left-hanging heavy path suffixes.

hwv.dk

Linear Straight Line Programs

Almost a normal SLP, but with two differences:

» Allow the root to have k children, denoted rq, ..., 1.
» Restrict the right child of all other internal nodes to be a leaf.

Motivation:

» Models LZ78 compression scheme with O(1) overhead.
» Can be converted into a normal SLP of at most double size.

hwv.dk 10/ 14

Fingerprints in O(loglogN) time

Root children in Linear SLP

» The start position of root child r, is the sum of string lengths for
children on the left, B = 3071 [S(rp)|.
» Data structure stores ¢(S(r;)) and ¢(S[1,B;]) (i€ 1,...,k).

S(root)| | ra [rs|ra] 15 [Te |
B By Bz Bs Bs Bg

Composing ¢(S[1,i]) in O(loglogN) time
» Find the predecessor B; of i in the set {B,...,Bi}.
» Compose ¢(S[1,i]) from two fingerprints in constant time:

» Fingerprint ¢(S[1, B;]) for a string ending in rj_; (which is stored).
» Fingerprint ¢(S[B; + 1, i]) for a prefix of a string generated by r;.

hwv.dk

11/ 14

Linear Straight Line Programs

All prefixes of S(v) fully generated by other nodes (for non-root node v).

(a) Linear SLP. (b) Dictionary tree.

» Store prefix relationships for non-root nodes in Linear SLP as
parent relationship in a dictionary tree of size O(n).

» Can find node generating m-length prefix of S(r;) in O(1) time
using level ancestor data structure.

hwv.dk

12/ 14

Longest Common Prefixes / Extensions

Preprocess a Straight Line Program (SLP) G of size n producing a string
S of length N to support LCP queries:
» LCP(i,j) = max/ such that S[i,i + ¢] = S[j,j + £].

Theorem
There are data structures solving the LCP problem on SLPs in

» O(n) space and query time O(log ¢log N)
» O(n) space and query time O(log ¢loglog ¢ + loglogN) if Gis a

Linear SLP
i J
! |
S = [[TTTTT S T T {17711 1] S 1T ([T T1T]
v H v H
v H v
v v
‘Q} { ‘Q} { O(log ¢) comparisons
v — v —
X i X [
v H v H

hwv.dk

13/ 14

The Takeaway Message

“Karp-Rabin fingerprints can be
computed efficiently on compressed
strings.”

Open Problems
» Other basic primitives on SLPs?
» Bookmarked fingerprints on unbalanced SLPs?
» LCP queries in same time as random access?

The Takeaway Message

“Karp-Rabin fingerprints can be
computed efficiently on compressed
strings.”

Open Problems
» Other basic primitives on SLPs?
» Bookmarked fingerprints on unbalanced SLPs?
» LCP queries in same time as random access?

Thank you!

