
Fingerprints in Compressed Strings
(In Proc. WADS 2013)

Philip Bille1, Patrick Hagge Cording1, Inge Li Gørtz1,

Benjamin Sach2, Hjalte Wedel Vildhøj1 and Søren Vind1

1Technical University of Denmark, DTU Compute, {phbi,phaco,inge,hwvi,sovi}@dtu.dk
2University of Bristol, Department of Computer Science, ben@cs.bris.ac.uk

October 10, 2013

WCTA 2013, Jerusalem

hwv.dk 1 / 14

The Takeaway Message

“Karp-Rabin fingerprints can be
computed efficiently on compressed

strings.”

hwv.dk 2 / 14

Straight Line Programs
Compression model for strings

I Compression is modelled as a Straight Line Program (SLP).
I An SLP G is a grammar in Chomsky normal form.
I G consists of production rules X1, . . . ,Xn of the form Xi = XlXr

(nonterminal) or Xi = a (terminal) representable as a DAG.
I A node v ∈ G produce a unique string S(v) of length |S(v)|.

X7

X6X5

X3 X4

X1 X2

a b

expands into

X7

X5

X3

X1

a

X2

b

X3

X1

a

X2

b

X6

X4

X2

b

X2

b

X3

X1

a

X2

b

hwv.dk 3 / 14

Karp-Rabin Fingerprints
Definition

The Karp-Rabin Fingerprint of a string S is defined as

φ(S) =
|S|∑

k=1

S[k]ck mod p ,

where p = O(2w) is a sufficiently large prime and c ∈ Zp is chosen
uniformly at random. Storing a fingerprint requires constant space.

S = a b a b b b a b

= 0 1 0 1 1 1 0 1

φ(S[2,5]) = 1c1 + 0c2 + 1c3 + 1c4 mod p

1 2 3 4 5 6 7 8

hwv.dk 4 / 14

Karp-Rabin Fingerprints
Key properties

Composition
Given any two of φ(S[i, j]), φ(S[j + 1, k]) and φ(S[i, k]), the remaining
fingerprint can be computed in O(1) time.

S = a b a b b b a b

= 0 1 0 1 1 1 0 1

φ(S[2,5]) φ(S[6,8])

φ(S[2,8])

1 2 3 4 5 6 7 8

Collisions are very unlikely
If S[i, j] 6= S[i′, j′] then with high probability φ(S[i, j]) 6= φ(S[i′, j′]).

hwv.dk 5 / 14

The SLP Toolbox
Useful primitives on SLPs
I Decompress a prefix or suffix of a node in linear time.

(Ga̧sieniec, Kolpakov, Potapov and Sant. In Proc. 15th DCC, 2005)

I Access a random symbol S[i] in O(log N) time.
(Bille, Landau, Raman, Sadakana, Satti, Weimann. In Proc. 22nd SODA, 2011)

I Decompress a substring incident to a bookmark in linear time.
(Gagie, Gawrychowski, Kärkkäinen, Nekrich, Puglisi. In Proc. LATA, 2012)

Our additions to the toolbox:
Fingerprints

I Compute φ(S[i, j]) in O(log N) time
(or in O(log log N) time if the SLP is “linear”)

Longest Common Prefixes / Extensions
I Compute LCP(i, j) in O(log N log `) time

(or in O(log ` log log `+ log log N) time if SLP is “linear”)

Many applications: Approximate String Matching, Longest Common
Substring, Palindromes, Tandem Repats, etc.

hwv.dk 6 / 14

Main Ideas

We only need to look at prefixes

I Fingerprint composition means that it is sufficient to be able to
compute fingerprints for prefixes of S, i.e., φ(S[1, i]).

I Subtracting two prefix fingerprints, we can obtain any substring
fingerprint φ(S[i, j]) in O(1) time.

Compose prefix fingerprint during a random access traversal

I Augment the SLP with additional information, e.g., each node
stores its fingerprint.

I Compose φ(S[1, i]) from fingerprints of selected substrings of S[1, i].
I Obtain these fingerprints from a random access traversal of the

SLP and the resulting root-to-leaf path.

hwv.dk 7 / 14

Fingerprints in O(h) time
A simple solution

Data structure

v

u w

Stores φ(S(v)), |S(v)|

Stores φ(S(u)), |S(u)| Stores φ(S(w)), |S(w)|

Composing φ(S[1, i]) in O(h) time

I Traverse the SLP for S[i] from the root, comparing i to the
substring length at each node to determine the path.

I If following a right edge, add the fingerprint for the string
generated by the left child to the composed fingerprint.

hwv.dk 8 / 14

Fingerprints in O(log N) time

Theorem (Bille et al., SODA 2011)
A random access query for S[i] in an SLP can be performed in O(log N)
time and O(n) space, also retrieving the sequence of O(log N) heavy paths
visited on the root-to-leaf path.

v

u

a1

a2

b2

b1

i

Composing φ(S[1, i]) in O(log N) time
I Perform random access query for S[i], and for each visited heavy

path, add fingerprint for all left-hanging nodes in constant time.
I Store fingerprints for all left-hanging heavy path suffixes.

hwv.dk 9 / 14

Linear Straight Line Programs

Almost a normal SLP, but with two differences:
I Allow the root to have k children, denoted r1, . . . , rk.
I Restrict the right child of all other internal nodes to be a leaf.

Motivation:
I Models LZ78 compression scheme with O(1) overhead.
I Can be converted into a normal SLP of at most double size.

r1 r2 r3 r4 r5 r6

a a ab b b

hwv.dk 10 / 14

Fingerprints in O(log log N) time

Root children in Linear SLP

I The start position of root child rq is the sum of string lengths for
children on the left, Bq =

∑q−1
p=1 |S(rp)|.

I Data structure stores φ(S(ri)) and φ(S[1,Bi]) (i ∈ 1, . . . , k).

B1 B2 B3 B4 B5 B6

S(root) r1 r2 r3 r4 r5 r6

Composing φ(S[1, i]) in O(log log N) time

I Find the predecessor Bj of i in the set {B1, . . . ,Bk}.
I Compose φ(S[1, i]) from two fingerprints in constant time:

I Fingerprint φ(S[1,Bj]) for a string ending in rj−1 (which is stored).
I Fingerprint φ(S[Bj + 1, i]) for a prefix of a string generated by rj.

hwv.dk 11 / 14

Linear Straight Line Programs

All prefixes of S(v) fully generated by other nodes (for non-root node v).

r1 r2 r3 r4 r5 r6

a a ab b b
(a) Linear SLP.

r1 r2

r3r4

r5 r6

a b

b

a

a

b

(b) Dictionary tree.

I Store prefix relationships for non-root nodes in Linear SLP as
parent relationship in a dictionary tree of size O(n).

I Can find node generating m-length prefix of S(rj) in O(1) time
using level ancestor data structure.

hwv.dk 12 / 14

Longest Common Prefixes / Extensions

Preprocess a Straight Line Program (SLP) G of size n producing a string
S of length N to support LCP queries:

I LCP(i, j) = max ` such that S[i, i + `] = S[j, j + `].

Theorem
There are data structures solving the LCP problem on SLPs in

I O(n) space and query time O(log ` log N)

I O(n) space and query time O(log ` log log `+ log log N) if G is a
Linear SLP

S =

i j

X X
X X
X X
X X
× ×
X X
× ×
X X

O(log `) comparisons

hwv.dk 13 / 14

The Takeaway Message

“Karp-Rabin fingerprints can be
computed efficiently on compressed

strings.”
Open Problems

I Other basic primitives on SLPs?
I Bookmarked fingerprints on unbalanced SLPs?
I LCP queries in same time as random access?

Thank you!

hwv.dk 14 / 14

The Takeaway Message

“Karp-Rabin fingerprints can be
computed efficiently on compressed

strings.”
Open Problems

I Other basic primitives on SLPs?
I Bookmarked fingerprints on unbalanced SLPs?
I LCP queries in same time as random access?

Thank you!

hwv.dk 14 / 14

