LONGEST COMMON EXTENSIONS IN SUBLINEAR SPACE

PHILIP BILLE
INGE LI G \varnothing RTZ
MATHIAS BÆK TEJS KNUDSEN
MOSHE LEWENSTEIN
HJALTE WEDEL VILDHØJ

CPM 2015
June 29, 2015

THE LONGEST COMMON EXTENSION PROBLEM

Prepreprocess T of length n to support the query:
LCE($\mathrm{i}, \mathrm{j})$: return the length of the longest common prefix of $T[\mathrm{i} \ldots \mathrm{n}]$ and $T[j \ldots \mathrm{n}]$

Prepreprocess T of length n to support the query:
LCE(i, $)$: return the length of the longest common prefix of $T[i \ldots n]$ and $T[j \ldots n]$

THE LONGEST COMMON EXTENSION PROBLEM PREFIX

Prepreprocess T of length n to support the query:
LCE(i,j): return the length of the longest common prefix of T[i...n] and T[j...n]

Example

$\mathrm{T}=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ${ }^{11}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | C | A | C | B | A | C | B | A | C | C |

$\operatorname{LCE}(3,6)=5$

Prepreprocess T of length n to support the query:
LCE(i, j): return the length of the longest common prefix of $T[\mathrm{i} . . . n]$ and $T[j \ldots \mathrm{n}]$

Example

$\operatorname{LCE}(3,6)=5$

Prepreprocess T of length n to support the query:
LCE(i, $)$: return the length of the longest common prefix of $T[i \ldots n]$ and $T[j \ldots n]$

Example

LCE $(3,6)=5$

	Space	Time
1	Store nothing	$\mathrm{O}(1) \quad \mathrm{O}(\ell)=\mathrm{O}(\mathrm{n})$

		Space	Time
1	Store nothing	$O(1)$	$O(\ell)=O(n)$
2	Store the suffix tree of T	$O(n)$	$O(1)$

		Space	Time
1	Store nothing	$O(1)$	$O(\ell)=O(n)$
2	Store the suffix tree of T	$O(n)$	$O(1)$

OUR RESULTS

$\ell=\operatorname{LCE}(\mathrm{i}, \mathrm{j})$

SIMPLE SOLUTIONS

Time
1 Store nothing

$$
O(1) \quad O(\ell)=O(n)
$$

Store the suffix tree of $T \quad O(n) \quad O(1)$

SIMPLE SOLUTIONS

Time

1	Store nothing	$O(1)$	$O(\ell)=O(n)$
2	Store the suffix tree of T	$O(n)$	$O(1)$

Can we obtain $O(n / \tau)$ space and $O(\tau)$ time for all $1 \leq \tau \leq n$?

SIMPLE SOLUTIONS

		Space	Time
1	Store nothing	$\mathrm{O}(1)$	$\mathrm{O}(\ell)=\mathrm{O}(\mathrm{n})$
2	Store the suffix tree of T	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$

CPM 2012 RESULTS*

		Space	Time	Trade-off range
3	Deterministic trade-off	$O(n / \tau)$	$\mathrm{O}\left(\tau^{2}\right)$	$1 \leq \tau \leq \sqrt{ } \mathrm{n}$
4	Randomized trade-off	$O(n / \tau)$	$\tau \log (\ell / \tau))$	$1 \leq \tau \leq \mathrm{n}$

Can we obtain $O(n / \tau)$ space and $O(\tau)$ time for all $1 \leq \tau \leq n$?

SIMPLE SOLUTIONS

		Space	Time
1	Store nothing	$O(1)$	$O(\ell)=O(n)$
2	Store the suffix tree of T		$O(n)$
$O(1)$			

CPM 2012 RESULTS*

		Space	Time	Trade-off range
3	Deterministic trade-off	$O(n / \tau)$	$\bigcirc\left(\tau^{2}\right)$	$1 \leq \tau \leq \sqrt{ } \mathrm{n}$
4	Randomized trade-off	$O(n / \tau)$	/og($\ell / \tau)$)	$1 \leq \tau \leq \mathrm{n}$

CPM 2015 RESULTS

		Space	Time	Trade-off range
5	NEW deterministic trade-off	$\mathrm{O}(\mathrm{n} / \tau)$	$\mathrm{O}\left(\tau \log ^{2}(\mathrm{n} / \tau)\right)$	$1 / \log n \leq \tau \leq n$
6	NEW randomized trade-off	$\bigcirc(n / \tau)$	$\bigcirc(\tau)$	$1 \leq \tau \leq n$

[^0]
THE NEW
 DETERMINISTIC
 TRADE-OFF

TWO STRUCTURES

Data Structure 1: $\mathrm{O}(\mathrm{n} / \tau)$ space and $\mathrm{O}(\tau)$ time, but works only if $|\mathrm{i}-\mathrm{j}|<\tau$
Data Structure 2: $\mathrm{O}(\mathrm{n} / \tau)$ space and $\mathrm{O}\left(\tau \log ^{2}(\mathrm{n} / \tau)\right)$ time:
Reduces an LCE(i,j) query to another query LCE (i', ${ }^{\prime}$ ') s.t. $\left|i^{\prime}-j^{\prime}\right|<\tau$

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

T

Lemma

An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

Lemma

An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

```
DETERMINISTIC TRADE-OFF
|i-j|\geq\tau
```


Lemma

An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

Lemma

An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$
T

Lemma
The suffix in the left half that maximizes the LCE value
An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

- Assume that j is a sampled position

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

Lemma
The suffix in the left half that maximizes the LCE value
An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

- Assume that j is a sampled position

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

Lemma
The suffix in the left half that maximizes the LCE value
An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

- Assume that j is a sampled position
- Then LCE $(i, j) \leq h$, so we can compute LCE (i, j) as LCE $\left(i, j^{\prime}\right)$

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

Lemma

An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

- Assume that j is a sampled position
- Then LCE $(i, j) \leq h$, so we can compute LCE (i, j) as LCE $\left(i, j^{\prime}\right)$

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

Lemma

An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

- Assume that j is a sampled position
- Then LCE $(i, j) \leq h$, so we can compute LCE (i, j) as LCE $\left(i, j^{\prime}\right)$

$$
\operatorname{LCE}(i, j)=\min \left(\operatorname{LCE}\left(i, j^{\prime}\right), h\right)
$$

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

The suffix in the left half that maximizes the LCE value

Lemma

An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

- Assume that j is a sampled position
- Then LCE $(i, j) \leq h$, so we can compute $\operatorname{LCE}(i, j)$ as LCE $\left(i, j^{\prime}\right)$

$$
\operatorname{LCE}(i, j)=\min \left(\operatorname{LCE}\left(i, j^{\prime}\right), h\right)
$$

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

The suffix in the left half that maximizes the LCE value

Lemma

An LCE(i, j) query where i and j are in separate halves of T can be reduced to another LCE $\left(i^{\prime}, j^{\prime}\right)$ query such that i^{\prime} and j^{\prime} are in the same half of T

Proof

- Assume that j is a sampled position
- Then LCE $(i, j) \leq h$, so we can compute LCE (i, j) as LCE $\left(i, j^{\prime}\right)$

$$
\operatorname{LCE}(i, j)=\min \left(\operatorname{LCE}\left(i, j^{\prime}\right), h\right)
$$

DETERMINISTIC TRADE-OFF $|i-j| \geq \tau$

T

```
DETERMINISTIC TRADE-OFF
\(|i-j| \geq \tau\)
```


- Build data structure recursively for left and right half of T

```
DETERMINISTIC TRADE-OFF
|i-j| \geq\tau
```


- Build data structure recursively for left and right half of T

```
DETERMINISTIC TRADE-OFF \(|i-j| \geq \tau\)
```


- Build data structure recursively for left and right half of T

```
DETERMINISTIC TRADE-OFF }|i-j|\geq
```


- Build data structure recursively for left and right half of T
- Stop when strings are $<2 \tau$

```
DETERMINISTIC TRADE-OFF |i-j | \geq\tau
```


- Build data structure recursively for left and right half of T
- Stop when strings are $<2 \tau$

Analysis

- $n /(2 \tau)$ sampled positions on each level
- $\log (n / \tau)$ levels
- $O(\tau)$ time on each level

```
DETERMINISTIC TRADE-OFF }|i-j|\geq
```


- Build data structure recursively for left and right half of T
- Stop when strings are $<2 \tau$

Analysis

- $n /(2 \tau)$ sampled positions on each level
- $\log (n / \tau)$ levels
- $\mathrm{O}(\tau)$ time on each level
$O((n / \tau) \log (n / \tau))$ space $O(\tau \log (n / \tau))$ time

```
DETERMINISTIC TRADE-OFF }|i-j|\geq
```


- Build data structure recursively for left and right half of T
- Stop when strings are $<2 \tau$

Analysis

- $n /(2 \tau)$ sampled positions on each level
- $\log (n / \tau)$ levels
- $\mathrm{O}(\tau)$ time on each level

SHAVING TWO LOGS

$O(n / \tau)$ space
$O\left(\tau \log ^{2}(n / \tau)\right)$ time
\downarrow
$O(\mathrm{n} / \tau)$ space
$O(\tau)$ time

SHAVING TWO LOGS

$$
\begin{gathered}
\mathrm{O}(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}\left(\tau \log ^{2}(\mathrm{n} / \tau)\right) \text { time }
\end{gathered}
$$

\downarrow

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

$$
\begin{gathered}
O(n / \tau) \text { space } \\
O(\tau) \text { time }
\end{gathered}
$$

SHAVING TWO LOGS

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}\left(\tau \log ^{2}(\mathrm{n} / \tau)\right)$ time

\downarrow

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time
\downarrow

$$
\begin{gathered}
O(n / \tau) \text { space } \\
O(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

\downarrow

$$
\begin{gathered}
O(n / \tau) \text { space } \\
O(\tau) \text { time }
\end{gathered}
$$

```
RANDOMIZED TRADE-OFF
```

T

```
RANDOMIZED TRADE-OFF
```

$$
\begin{gathered}
O(n / \tau) \text { space } \\
O(\tau \log (\ell / \tau)) \text { time }
\end{gathered}
$$


```
RANDOMIZED TRADE-OFF
```


Answering an LCE query

```
RANDOMIZED TRADE-OFF
```

$O(n / \tau)$ space
$O(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$O(n / \tau)$ space
$O(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$O(n / \tau)$ space
$O(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$O(n / \tau)$ space
$O(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$O(n / \tau)$ space
$O(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$O(n / \tau)$ space
$O(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
```
RANDOMIZED TRADE-OFF
```

$O(n / \tau)$ space
$O(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
2. Scan the interval directly to find the mismatch
```
RANDOMIZED TRADE-OFF
```

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
2. Scan the interval directly to find the mismatch

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
2. Scan the interval directly to find the mismatch

RANDOMIZED TRADE-OFF

$O(\log (\ell / \tau))$ substring pairs

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
2. Scan the interval directly to find the mismatch

RANDOMIZED TRADE-OFF

$\longmapsto \operatorname{LCE}(i, j) \longrightarrow$

Answering an LCE query

1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
2. Scan the interval directly to find the mismatch

Data structure

Stores fingerprint of every block aligned suffix
\Rightarrow the fingerprint of any substring can be retrieved in $\mathrm{O}(\tau)$ time

NEXT STEP

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}\left(\tau \log ^{2}(\mathrm{n} / \tau)\right)$ time

\downarrow

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}(\tau \log (\ell / \tau))$ time

\downarrow

$$
\begin{gathered}
\mathrm{O}(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

\downarrow

$$
\begin{gathered}
O(n / \tau) \text { space } \\
O(\tau) \text { time }
\end{gathered}
$$

RANDOMIZED TRADE-OFF

$$
\begin{gathered}
O(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

Some definitions

T

```
RANDOMIZED TRADE-OFF
```

$$
\begin{gathered}
O(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

Some definitions

T \square

```
RANDOMIZED TRADE-OFF
```

$$
\begin{gathered}
O(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$


```
RANDOMIZED TRADE-OFF
```

$$
\begin{gathered}
O(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$


```
RANDOMIZED TRADE-OFF
```

$$
\begin{gathered}
O(n / \tau) \text { space } \\
O(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

In a block k we sample b_{k} evenly spaced positions, where $b_{k}=\min \left(2^{\mu / 2}, \tau\right)$

```
RANDOMIZED TRADE-OFF
```

$$
\begin{gathered}
O(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

Some definitions

In a block k we sample b_{k} evenly spaced positions, where $b_{k}=\min (2 \mu / 2, \tau)$

Significance of block k

```
RANDOMIZED TRADE-OFF
```


Some definitions

In a block k we sample b_{k} evenly spaced positions, where $b_{k}=\min \left(2{ }^{\mu / 2}, \tau\right)$

Significance of block k

```
RANDOMIZED TRADE-OFF
```


In a block k we sample b_{k} evenly spaced positions, where $b_{k}=\min \left(2 \mu^{\mu / 2}, \tau\right)$

Significance of block k

```
RANDOMIZED TRADE-OFF
```

$$
\begin{gathered}
O(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

In a block k we sample b_{k} evenly spaced positions, where $b_{k}=\min (2 \mu / 2, \tau)$

Significance of block k

```
RANDOMIZED TRADE-OFF
```

$$
\begin{gathered}
O(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

In a block k we sample b_{k} evenly spaced positions, where $b_{k}=\min (2 \mu / 2, \tau)$

Significance of block k

```
RANDOMIZED TRADE-OFF
```

$$
\begin{gathered}
O(n / \tau) \text { space } \\
O(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

In a block k we sample b_{k} evenly spaced positions, where $b_{k}=\min (2 \mu / 2, \tau)$

Significance of block k

```
RANDOMIZED TRADE-OFF
```

$O(n / \tau)$ space
$O(\tau+\log (\ell / \tau))$ time

In a block k we sample b_{k} evenly spaced positions, where $b_{k}=\min \left(2_{\uparrow} / 2, \tau\right)$

Significance of block k
Bounding the number of sampled positions

$$
|\mathcal{S}|=\sum_{k=0}^{n / \tau-1} b_{k} \leq \sum_{\mu=0}^{\lg (n / \tau)} 2^{\lg (n / \tau)-\mu} 2^{\lfloor\mu / 2\rfloor} \leq \frac{n}{\tau} \sum_{\mu=0}^{\infty} 2^{-\mu / 2}=(2+\sqrt{2}) \frac{n}{\tau}=O\left(\frac{n}{\tau}\right)
$$

Distance to a sampled position is at most $\tau / 2^{\mu / 2}$

Distance to a sampled position is at most $\tau / 2^{\mu / 2}$
\Longrightarrow Time to compute $\varphi(a)$ is $O\left(1+\tau / 2^{\mu / 2}\right)$

RANDOMIZED TRADE-OFF

Analysis

$O(n / \tau)$ space $O(\tau+\log (\ell / \tau))$ time

Query time

Cost of computing a fingerprint is $O\left(1+\tau / 2^{\mu / 2}\right)$, and μ iterates from 0 to $\log (\ell / \tau)$ and back to 0 , thus the query time becomes

$$
O\left(\sum_{\mu=0}^{\lg (\ell / \tau)} 1+\tau / 2^{\lfloor\mu / 2\rfloor}\right)=O(\tau+\log (\ell / \tau))
$$

Space

Cost is the total number of sampled positions/fingerprints

$$
|\mathcal{S}|=\sum_{k=0}^{n / \tau-1} b_{k} \leq \sum_{\mu=0}^{\lg (n / \tau)} 2^{\lg (n / \tau)-\mu_{2}\lfloor\mu / 2\rfloor} \leq \frac{n}{\tau} \sum_{\mu=0}^{\infty} 2^{-\mu / 2}=(2+\sqrt{2}) \frac{n}{\tau}=O\left(\frac{n}{\tau}\right)
$$

NEXT STEP

$\mathrm{O}(\mathrm{n} / \tau)$ space
$\mathrm{O}\left(\tau \log ^{2}(\mathrm{n} / \tau)\right)$ time

\downarrow

$O(n / \tau)$ space
$O(\tau \log (\ell / \tau))$ time

\downarrow

$$
\begin{gathered}
\mathrm{O}(\mathrm{n} / \tau) \text { space } \\
\mathrm{O}(\tau+\log (\ell / \tau)) \text { time }
\end{gathered}
$$

\downarrow

$$
\begin{gathered}
O(n / \tau) \text { space } \\
O(\tau) \text { time }
\end{gathered}
$$

Theorem

There is an $O(n / \tau)$ space data structure that in $O(1)$ time either
A. computes the answer to an LCE (i, j) query, or
B. returns a certificate that $\ell<\tau^{2}$

Observation

In case B the query time of our previous algorithm becomes $\mathrm{O}(\tau+\log (\ell / \tau))=\mathrm{O}(\tau)$

> Technique
> Difference covers

SUMMARY \& OPEN PROBLEMS

MAIN THEOREM

```
The LCE problem can be solved in
    O(n/\tau) space and O(\tau) time
    for all 1\leq\tau\leqn
```

Lower bound from RMQ implies a time-space product of $\Omega(n / l o g n)$ Can we close this gap?

Can we obtain optimal preprocessing times?

[^0]: *Philip Bille, Inge Li Gørtz, Benjamin Sach, Hjalte Wedel Vildhøj,
 Time-Space Trade-Offs for Longest Common Extensions, CPM 2012

