
MASTER’S THESIS

String Indexing for Patterns with Wildcards

Hjalte Wedel Vildhøj and Søren Vind

Technical University of Denmark
August 8, 2011

Abstract

We consider the problem of indexing a string t of length n to report the occurrences of
a query pattern p containing m characters and j wildcards. Let occ be the number of
occurrences of p in t, and σ the size of the alphabet. We obtain the following results.

• A linear space index with query time O(m + σj log log n + occ). This signif-
icantly improves the previously best known linear space index described by
Lam et al. [ISAAC 2007], which requires query time Θ(jn) in the worst case.

• An index with optimal query time O(m+ j+ occ) using space O(σk2

n logk log n),
where k is the maximum number of wildcards allowed in the pattern. This is the
first non-trivial bound with this query time.

• A time-space trade-off for the problem which generalizes the index described by
Cole et al. [STOC 2004].

The Longest Common Prefix (LCP) data structure introduced by Cole et al. is a key
component in our results. We give a detailed explanation and show several new
properties of the LCP data structure. Most importantly, we show that not only suffixes,
but arbitrary sets of substrings of t, can be queried, and that unrooted LCP queries
can be performed in linear space. Our results are obtained by combining the new
properties of the LCP data structure with well-known and new techniques. In particular,
we introduce a generalization of the heavy-path decomposition, which could be of
independent interest. Finally, we extend our results to allow variable length gaps or
optional wildcards in the query pattern, improving upon the only previously known
index for this problem by Lam et al. [ISAAC 2007].

Supervisors: Philip Bille and Inge Li Gørtz

CONTENTS

Contents i

1 Introduction 1
1.1 Previous Work . 2
1.2 Our Results . 4

2 Preliminaries 7
2.1 Strings and Basic Definitions . 7
2.2 Trees and Tries . 9

2.2.1 Heavy Path Decomposition . 9
2.3 Overview of Data Structures . 9

2.3.1 Predecessor . 10
2.3.2 Nearest Common Ancestor . 10
2.3.3 Weighted Ancestor . 10

3 The LCP Data Structure 13
3.1 Introduction . 13

3.1.1 Unrooted LCP Queries . 14
3.2 The Longest Prefix String . 15
3.3 Building the LCP Data Structure . 16
3.4 Preprocessing a Query String . 16

3.4.1 Preprocessing All Suffixes of a Query String 17
3.5 Rooted LCP Queries . 18

3.5.1 Example of a Rooted LCP Query . 22
3.6 Unrooted LCP Queries . 22

3.6.1 Prerequisites . 24
3.6.2 The Solution by Cole et al. 25
3.6.3 A New Solution . 27

4 An Unbounded Wildcard Index Using Linear Space 29
4.1 ART Decomposition . 29

ii CONTENTS

4.2 Obtaining the Index . 29

5 A Time-Space Trade-Off for k-Bounded Wildcard Indexes 33
5.1 Heavy α-Tree Decomposition . 33
5.2 Wildcard Trees . 34
5.3 Wildcard Tree Index . 37

5.3.1 Time and Space Analysis . 37
5.4 Wildcard Tree Index Using the LCP Data Structure 39

5.4.1 Time and Space Analysis . 39

6 A k-Bounded Wildcard Index with Optimal Query Time 41
6.1 A Black-Box Reduction . 41
6.2 Obtaining the Index . 42

7 Variable Length Gaps 43
7.1 Introduction . 43
7.2 Previous Work . 44
7.3 Our Results . 45
7.4 Supporting Variable Length Gaps . 45

7.4.1 Reporting Occurrences . 46
7.4.2 Analysis of the Modified Search . 46

8 Conclusion 49

Bibliography 51

Appendices 55

A Summary of Notation and Definitions 57

B The Proof of Lemma 4 by Cole et al. 61

1

INTRODUCTION

The string indexing problem is to build an index for a string t such that the occurrences of a
query pattern p can be reported. The classic suffix tree data structure [38] combined with
perfect hashing [17] gives a linear space solution for string indexing with optimal query
time, i.e., an O(n) space data structure that supports queries in O(m+ occ) time, where
occ is the number of occurrences of p in t.

Recently, various extensions of the classic string indexing problem that allow errors or
wildcards (also known as gaps or don’t cares) have been studied [13, 26, 36, 35, 8, 29, 32].
In this thesis, we focus on one of the most basic of these extensions, namely, string indexing
for patterns with wildcards. In this problem, only the pattern contains wildcards, and
the goal is to report all occurrences of p in t, where a wildcard is allowed to match any
character in t.

String indexing for patterns with wildcards finds several natural applications in large
scale data processing areas such as information retrieval, bioinformatics, data mining, and
internet traffic analysis. For instance in bioinformatics, the PROSITE data base [23, 7]
supports searching for protein patterns containing wildcards.

Despite significant interest in the problem and its many variations, most of the basic
questions remain unsolved. We introduce three new indexes and obtain several new
bounds for string indexing with wildcards in the pattern. If the index can handle patterns
containing an unbounded number of wildcards, we call it an unbounded wildcard index,
otherwise we refer to the index as a k-bounded wildcard index, where k is the maximum
number of wildcards allowed in p. Let n be the length of the indexed string t, and σ be the
size of the alphabet. We define m and j ≤ k to be the number of characters and wildcards
in p, respectively. We show that,

• There is an unbounded wildcard index with query time O(m + σj log logn + occ)
using linear space. This significantly improves the previously best known linear
space index by Lam et al. [26], which requires query time Θ(jn) in the worst case.
Compared to the index by Cole et al. [13] having the same query time, we improve
the space usage by a factor log n.

2 INTRODUCTION

• There is a k-bounded wildcard index with optimal query time O(m+ j + occ) using
space O(σk

2
n logk log n). This is the first non-trivial space bound with this query

time.

• There is a time-space trade-off for k-bounded wildcard indexes. This trade-off
generalizes the index described by Cole et al. [13].

A key component in our solutions is the Longest Common Prefix (LCP) data structure
introduced by Cole et al. [13]. We provide a detailed explanation and give new proofs for
the data structure. Additionally, we show two new important properties of the LCP data
structure that are essential for obtaining our results.

The above wildcard indexes are obtained by combining the LCP data structure with
well-known and new techniques. In particular, we introduce the heavy α-tree decomposi-
tion, which is a generalization of the classic heavy-path decomposition and could be of
independent interest.

Finally, we consider the string indexing for patterns with variable length gaps problem,
which is a generalization of string indexing for patterns with wildcards. We show that our
wildcard indexes can be used to solve this problem by modifying the search algorithm.

Thesis Outline Section 1.2 states our results, compares them to previous solutions, and
describes the essential techniques for obtaining them. Chapter 2 covers basic definitions.
Chapter 3 contains a detailed description of the LCP data structure and accounts for two
new important properties. The unbounded wildcard index using linear space is described in
Chapter 4. The time-space trade-off for k-bounded wildcard indexes is given in Chapter 5,
and Chapter 6 covers the k-bounded wildcard index with optimal query time. In Chapter 7,
we describe how our wildcard indexes can be used to solve the string indexing for patterns
with variable length gaps problem.

1.1 Previous Work

Exact string matching has been generalized with error bounds in a number of different
ways. In particular, allowing matches within a bounded hamming- or edit distance is
known as approximate string matching, and has been subject to extensive research [27,
28, 34, 14, 12, 36, 8, 29, 13, 32, 20, 4]. Another generalization was suggested by
Fischer and Paterson [16], allowing wildcards in the text or pattern.

Work on the wildcard problem has mostly focused on the non-indexing variant, where
the string t is not preprocessed in advance [16, 15, 11, 25, 10, 6]. Some solutions for
the indexing problem considers the case where wildcards appear only in the indexed
string [35] or in both the string and the pattern [13, 26].

In the following, we summarize the known indexes that support wildcards in the
pattern only. We focus on the case where k > 1, since for k = 0 the problem is classic
string indexing. For k = 1, Cole et al. [13] describe a selection of specialized solutions.
However, these solutions do not generalize to larger k.

Several simple solutions to the problem exist for k > 1. Using a suffix tree T for t [38],
we can find all occurrences of p in a top-down traversal starting from the root. When we

3

reach a wildcard character in p in location ` ∈ T , the search branches out, consuming the
first character on all outgoing edges from `. This gives an unbounded wildcard index using
O(n) space with query time O(σjm+ occ), where occ is the total number of occurrences
of p in t. Alternatively, we can build a compressed trie storing all possible modifications
of all suffixes of t containing at most k wildcards. This gives a k-bounded wildcard index
using O(nk+1) space with query time O(m + j + occ), since there are

∑k
i=0

(
n
i

)
= O(nk)

possible modifications for each of the n suffixes.
In 2004, Cole et al. [13] gave an elegant k-bounded wildcard index using O(n logk n)

space with O(m + 2j log log n + occ) query time. For sufficiently small values of j this
significantly improves the previous bounds. The key components in this solution is a new
data structure for longest common prefix (LCP) queries and a heavy path decomposition [22]
of the suffix tree for the text t. Given a pattern p, the LCP data structure supports efficiently
inserting all suffixes of p into the suffix tree for t, such that subsequent longest common
prefix queries between any pair of suffixes from t and p can be answered in O(log log n)
time. This is the log log n term in the query time. The heavy path decomposition partitions
the suffix tree into disjoint heavy paths such that any root-to-leaf path contains at most
a logarithmic number of heavy paths. Cole et al. [13] show how reduce the size of the
simple linear time index at the cost of increasing query time. The idea is to only create
additional wildcard trees for the off-path subtries in the heavy path decomposition. This
leads to the O(n logk n) space bound. The construction ensures that the top-down search
branches at most twice for each wildcard in the pattern, leading to the 2j term in the query
time. Though they did not consider unbounded wildcard indexes, the technique can be
extended to this case by using only the LCP data structure, and not creating wildcard trees.
This leads to an unbounded wildcard index with query time O(m+σj log logn+occ) using
space O(n log n).

A different approach was taken by Iliopoulos and Rahman [24], allowing them to
obtain an unbounded wildcard index using linear space. For a pattern p consisting of
strings p0, . . . , pj (subpatterns) interleaved by j wildcards, their index has query time
O(m+

∑j
i=0 occ(pi, t)), where occ(pi, t) denotes the number of matches of pi in t.

This was later improved by Lam et al. [26] with an index that determines complete
matches by first identifying potential matches of the subpatterns in the suffix tree for

Type Time Space Solution

Unbounded

O(m+
∑j
i=0 occ(pi, t)) O(n) Iliopoulos and Rahman [24]

O(m+ jmin0≤i≤j occ(pi, t)) O(n) Lam et al. [26]
O(σjm+ occ) O(n) Simple suffix tree index †
O(m+ σj log log n+ occ) O(n) ART decomposition †
O(m+ σj log log n+ occ) O(n logn) Cole et al. [13]

k-Bounded

O(m+ βj log log n+ occ) O(n logn logk−1
β n) Heavy α-tree decomposition †

O(m+ 2j log logn+ occ) O(n logk n) Cole et al. [13]
O(m+ j + occ) O(nσk

2

logk logn) Special index for small patterns †
O(m+ j + occ) O(nk+1) Simple optimal time index †

Table 1.1: † = presented in this thesis. The term occ(pi, t) denotes the number of matches of pi in t and is
Θ(n) in the worst case.

4 INTRODUCTION

t and subsequently verifying each possible match for validity using interval stabbing
on the subpatterns. Their solution is an unbounded wildcard index with query time
O (m+ jmin0≤i≤j occ(pi, t)) using linear space. However, both of these solutions have a
worst case query time of Θ(jn), since there may be Θ(n) matches for a subpattern, but no
matches of p. Table 1.1 summarizes the existing solutions for the problem in relation to
our results.

1.2 Our Results

Our main contributions are three new wildcard indexes.

Theorem 1 Let t be a string of length n from an alphabet of size σ. There is an un-
bounded wildcard index for t using O(n) space. The index can report the occurrences
of a pattern with m characters and j wildcards in time O(m+ σj log log n+ occ).

Compared to the solution by Cole et al. [13], we obtain the same query time while reducing
the space usage by a factor log n. We also significantly improve upon the previously best
known linear space index by Lam et al. [26], as we match the linear space usage while
improving the worst-case query time from Θ(jn) to O(m + σj log logn + occ) provided
j ≤ logσ n. Our solution is faster than the simple suffix tree index for m = Ω(log log n).
Thus, for sufficiently small j we improve upon the previously known unbounded wildcard
indexes.

The main idea of the solution is to combine an ART decomposition [2] of the suffix
tree for t with the LCP data structure. The suffix tree is decomposed into a number of
logarithmic sized bottom trees and a single top tree. We introduce a new variant of the
LCP data structure for use on the bottom trees, which supports queries in logarithmic time
and linear space. The logarithmic size of the bottom trees leads to LCP queries in time
O(log log n). On the top tree we use the LCP data structure by Cole et al. [13] to answer
queries in time O(log log n). The number of LCP queries performed during a search for p is
O(σj), yielding the σj log logn term in the query time. The reduced size of the top tree
causes the index to be linear in size.

Theorem 2 Let t be a string of length n from an alphabet of size σ. For 2 ≤ β < σ,
there is a k-bounded wildcard index for t using O

(
n log(n) logk−1β n

)
space. The index

can report the occurrences of a pattern with m characters and j ≤ k wildcards in time
O
(
m+ βj log logn+ occ

)
.

The theorem provides a time-space trade-off for k-bounded wildcard indexes. Compared to
the index by Cole et al. [13], we reduce the space usage by a factor logk−1 β by increasing
the branching factor from 2 to β. For β = 2 the index is identical to the index by Cole et al.
The result is obtained by generalizing the wildcard index described by Cole et al. We use a
heavy α-tree decomposition, which is a new technique generalizing the classic heavy path
decomposition by Harel and Tarjan [22]. This decomposition could be of independent
interest. We also show that for β = 1 the same technique yields an index with optimal
query time O(m+ j + occ) using space O(nhk), where h is the height of the suffix tree for
t.

5

Theorem 3 Let t be a string of length n from an alphabet of size σ. There is a k-
bounded wildcard index for t using O(σk

2
n logk log n) space. The index can report the

occurrences of a pattern with m characters and j ≤ k wildcards in time O(m+j+occ).

To our knowledge this is the first optimal time index with a non-trivial space bound.
The result improves upon the space usage of the simple optimal time index when σk <
n/ log log n. To achieve this result, we use the O(nhk) space index to obtain a black-box
reduction that can produce an optimal time index from an existing index.

The idea is to build the O(nhk) space index with support for short patterns, and
query another index if the pattern is long. This technique is similar to the one used by
Bille and Gørtz [5] and closely related to the concept of filtering search introduced by
Chazelle [9]. The theorem follows from applying the black-box reduction to the index of
Theorem 1.

2

PRELIMINARIES

In Section 2.1 and Section 2.2 we introduce the notation and definitions used throughout
the thesis. Furthermore, we briefly review a few important data structures in Section 2.3.
A complete summary of our notation is enclosed in Appendix A.

2.1 Strings and Basic Definitions

Let p = p0∗p1∗. . .∗pj be a pattern consisting of j+1 strings p0, p1, . . . , pj ∈ Σ∗ (subpatterns)
interleaved by j ≤ k wildcards. The substring starting at position l ∈ {1, . . . , n} in t is an
occurrence of p if and only if each subpattern pi matches the corresponding substring in t.
That is,

pi = t

[
l + i+

i−1∑
r=0

|pr|, l + i− 1 +

i∑
r=0

|pr|

]
for i = 0, 1, . . . , j ,

where t[i, j] denotes the substring of t between indices i and j, both inclusive. We define
t[i, j] = ε for i > j, t[i, j] = t[1, j] for i < 1 and t[i, j] = t[i, |t|] for j > |t|. Furthermore
m =

∑j
r=0 |pr| is the number of characters in p, and we assume without loss of generality

that m > 0 and k > 0.
Let prefi(t) = t[1, i] and suffi(t) = t[i, n] denote the prefix and suffix of t of length i

and n− i+ 1, respectively. Omitting the subscripts, we let pref(t) and suff(t) denote the
set of all non-empty prefixes and suffixes of t, respectively.

For two strings x, y ∈ Σ∗, we denote the maximum common prefix between the two
strings as maxpref(x, y), i.e., maxpref(x, y) is the string z of maximum length such that z
is a prefix of both x and y. We also refer to the length of maxpref(x, y) as the distance that
x follows y.

We extend the definitions of pref, suff and maxpref to sets of strings S ⊂ Σ∗ as follows.

prefi(S) = {prefi(x) | x ∈ S}

pref(S) =
⋃
x∈S

pref(x)

suffi(S) = {suffi(x) | x ∈ S}

suff(S) =
⋃
x∈S

suff(x)

maxpref(S, t) = prefi(t) where i = max
x∈S
|maxpref(x, t)|

8 PRELIMINARIES

A set of strings S ⊂ Σ∗ is prefix-free if no string in S is a prefix of another string in S.
Any string set S can be made prefix-free by appending the same unique character $ /∈ Σ to
each string in S.

We use the symbol ≺ to denote the strict lexicographic order relation on strings, i.e., for
x, y ∈ Σ∗, we write x ≺ y if and only if x precedes y in lexicographic order. Furthermore
we write x � if either x ≺ y or x = y. The following lemma establishes a useful connection
between the lexicographic order and the maximum prefix of strings, and we will use the
corollary of the lemma in many of the following proofs.

Lemma 1 Let x, y, z ∈ Σ∗ such that x � y � z or z � y � x, then

maxpref(x, z) = minstr
{

maxpref(x, y),maxpref(y, z)
}
,

where minstrS = argminx∈S |x| is a string in S ⊂ Σ∗ of minimum length.

Proof Without loss of generality, we consider the case where x � y � z. We consider
the three possible cases for the maximum common prefix of x and y in relation to the
maximum common prefix of y and z.

Case 1: |maxpref(x, y)| > |maxpref(y, z)|. In this case y follows x longer than z as
shown in Figure 2.1(a). Thus, since x and y branches from z in the same location,
maxpref(x, z) = maxpref(y, z) = minstr

{
maxpref(x, y),maxpref(y, z)

}
.

Case 2: |maxpref(x, y)| = |maxpref(y, z)|. Here y follows x and z equally long
as shown in Figure 2.1(b). That is, y branches from the two strings in the
same location they branch from each other, so maxpref(x, z) = maxpref(x, y) =
maxpref(y, z) = minstr

{
maxpref(x, y),maxpref(y, z)

}
.

Case 3: |maxpref(x, y)| < |maxpref(y, z)|. This case is symmetric to the first
case, so y follows z longer than x. As shown in Figure 2.1(c), both y and
z branches from x in the same location, so maxpref(x, z) = maxpref(x, y) =
minstr

{
maxpref(x, y),maxpref(y, z)

}
.

x � y � z

maxpref(x, z)

maxpref(y, z)

maxpref(x, y)

(a) Case 1

x � y � z

maxpref(x, z)

maxpref(y, z)

maxpref(x, y)

(b) Case 2

x � y � z

maxpref(x, z)

maxpref(y, z)

maxpref(x, y)

(c) Case 3

Figure 2.1: The three possibilities for y.

In all three cases maxpref(x, z) = minstr
{

maxpref(x, y),maxpref(y, z)
}

. The proof
for the case z � y � x is symmetrical.

9

Corollary 1 Let x, y, z ∈ Σ∗ such that x � y � z or z � y � x, then

|maxpref(x, z)| = min
(
|maxpref(x, y)|, |maxpref(y, z)|

)
.

2.2 Trees and Tries

For a tree T , the root is denoted root(T) and height(T) is the number of edges on a longest
path from root(T) to a leaf of T . A compressed trie T (S) is a tree storing a prefix-free
set of strings S ⊂ Σ∗. The edges are labeled with substrings of the strings in S, such that
a path from the root to a leaf corresponds to a unique string in S. All internal vertices
(except the root) have at least two children, and all labels on the outgoing edges of a vertex
have different initial characters. The outgoing edges from a vertex are sorted according to
the lexicographical ordering of their labels.

A location ` ∈ T (S) may refer to either a vertex or a position on an edge in T (S).
Formally, ` = (v, s) where v is a vertex in T (S) and s ∈ Σ∗ is a prefix of the label on
an outgoing edge of v. If s = ε we also refer to ` as an explicit vertex, otherwise ` is
called an implicit vertex. There is a one-to-one mapping between locations in T (S) and
unique prefixes in pref(S). The prefix x ∈ pref(S) corresponding to a location ` ∈ T (S) is
obtained by concatenating the edge labels on the path from root(T (S)) to `. Consequently,
we use x and ` interchangeably, and we let |`| = |x| denote the length of x. Since S is
assumed prefix-free, each leaf of T (S) is a string in S, and conversely. The suffix tree for t
introduced by Weiner [38] denotes the compressed trie over all suffixes of t, i.e., T (suff(t)).
We define T`(S) as the subtrie of T (S) rooted at `. That is, T`(S) contains the suffixes of
strings in T (S) starting from `. Formally, T`(S) = T (S`), where

S` =
{

suff |`|(x) | x ∈ S ∧ pref |`|(x) = `
}
.

2.2.1 Heavy Path Decomposition

For a vertex v in a rooted tree T , we define weight(v) to be the number of leaves in Tv,
where Tv denotes the subtree rooted at v. We define the weight of a tree as weight(T) =
weight(root(T)). The heavy path decomposition of T , introduced by Harel and Tarjan [22],
classifies each edge as either light or heavy. For each vertex v ∈ T , we classify the
edge going from v to its child of maximum weight (breaking ties arbitrarily) as heavy.
The remaining edges are light. This construction has the property that on a path from
the root to any vertex, O(log(weight(T))) heavy paths are traversed. For a heavy path
decomposition of a compressed trie T (S), we assume that the heavy paths are extended
such that the label on each light edge contains exactly one character.

2.3 Overview of Data Structures

Our solutions depend on several advanced data structures. In the following subsections,
we briefly review the most important of these.

10 PRELIMINARIES

2.3.1 Predecessor

Let R ⊆ U = {0, . . . , u − 1} be a set of integers from a universe U of size u. Given a
query element i ∈ U , the predecessor problem is to find the maximal element in R which is
smaller than i. A predecessor data structure stores the set R and supports predecessor and
successor queries PREDR(i) and SUCCR(i). Formally, the queries are defined as follows.

PREDR(i) = max
j∈R, j≤i

j and SUCCR(i) = min
j∈R, j≥i

j .

In a paper from 1982, Willard [39] presents a solution known as a Y-fast trie having query
time O(log log u) and space usage O(|R|). The data structure splits R in a number of
non-overlapping consecutive parts of size O(log |R|), each stored in a balanced binary
search tree. Furthermore, the data structure stores the values splitting the consecutive
parts of R in a specialized trie known as a X-fast trie. A query is answered by first searching
the X-fast trie for the correct split value and then searching its neighboring consecutive
parts of R, each of which can be done in time O(log log u).

2.3.2 Nearest Common Ancestor

Given two vertices u, v in a rooted tree T , the nearest common ancestor problem asks for
the common ancestor of u and v of greatest depth. In 2004, Alstrup et al. [1] presented a
labeling scheme solving the problem with query time O(1) and O(n) space usage, where
n is the number of vertices in T . Their scheme assigns a label to every vertex v ∈ T that
encodes the path from the root of T to v, using a heavy path decomposition of T to reduce
the length of each label to O(log n). By using alphabetic coding for the labels, the total
label length sums to O(n). A nearest common ancestor query NCA(u, v) calculates the label
of the nearest common ancestor vertex of two vertices u, v ∈ T by considering the labels
of u and v and finding their common prefix in constant time.

2.3.3 Weighted Ancestor

Let T be a rooted tree, where each edge e ∈ T has a positive integer weight, denoted
weight(e). The depth of a vertex v ∈ T , denoted depth(v), is the sum of the edge weights
on the path from the root of T to v. The weighted ancestor problem is to build a data
structure for T with support for weighted ancestor queries. A weighted ancestor query
WA(v, i) consists of a vertex v ∈ T and a positive integer i. The answer to the query is the
minimal-depth ancestor1 of v with depth at least i. For our purposes, T is a compressed
trie T (S), and the weight of an edge e ∈ T (S) is equal to the length of the string label e.
We will assume that the query WA(v, i) on a compressed trie with i ≤ depth(v) gives the
ancestor location to v of depth exactly i, i.e., the ancestor is allowed to be an implicit vertex.
We can determine this location in constant time after having found the minimal-depth
explicit ancestor vertex of v having depth at least i.

Amir et al. [3] presented a data structure supporting weighted ancestor queries in time
O(log log n) and space O(n) on a tree T with n vertices. Their solution uses a heavy path

1We assume a vertex is an ancestor of itself.

11

decomposition of T and performs a binary search on the O(log n) heavy paths from v to
the root of T . When the search has found the correct heavy path, a predecessor query is
performed on the vertices of the heavy path to determine the correct answer.

3

THE LCP DATA STRUCTURE

In this chapter we describe the Longest Common Prefix (LCP) data structure in detail and
account for our additions that are essential for obtaining Theorem 1. In Section 3.1 we
introduce and summarize the properties of the data structure, and it suffices to read this
section to understand the remaining chapters of this thesis.

The subsequent sections in this chapter contain a detailed explanation and proofs of
the data structure. Section 3.2 describes the important concept of the longest prefix string.
The construction of the data structure and the necessary preprocessing of each query string
is covered in Section 3.3 and Section 3.4, respectively. Section 3.5 shows how to perform
rooted LCP queries. Finally, Section 3.6 details the original method as well as our new
method for performing unrooted LCP queries.

3.1 Introduction

The Longest Common Prefix (LCP) data structure, introduced by Cole et al. [13], provides a
way to traverse a compressed trie without tracing the query string one character at a time.
In this section we give a brief self-contained description of the data structure.

The LCP data structure stores a collection of compressed tries T (C1), T (C2), . . . , T (Cq)
over the string sets C1, C2, . . . , Cq. Cole et al. [13] assumed that each set Ci was a subset
of the suffixes of the indexed string t, but we show that each Ci can be an arbitrary set of
substrings of t. This is important for the possible applications of the data structure and
this property is exploited in Theorem 1.

The purpose of the LCP data structure is to support LCP queries:

LCP(x, i, `): Returns the location in T (Ci) where the search for the string x ∈ Σ∗ stops
when starting in location ` ∈ T (Ci).

If ` is the root of T (Ci), we refer to the above LCP query as a rooted LCP query. Otherwise
the query is called an unrooted LCP query. For rooted queries, we sometimes omit the
` parameter of the LCP query, since by definition ` = root(T (Ci)). In addition to the
compressed tries T (C1), . . . , T (Cq), the LCP data structure also stores the suffix tree for t,
denoted T (C) where C = suff(t).

14 THE LCP DATA STRUCTURE

The answer to a rooted LCP query LCP(x, i) corresponds to the longest common prefix
of x and the strings in Ci, i.e., LCP(x, i) returns the unique location maxpref(Ci, x) in
T (Ci). Answering a rooted LCP query LCP(x, i) can be done in O(|x|) time by traversing
T (Ci) as if inserting x into the trie, and reporting the location in which the search stops.
In this way, answering a very large number of LCP queries for the same string x might
require Θ(|x|) time for each query. Cole et al. [13] observed that the similarity of the tries
can be exploited to answer subsequent queries for the same string much faster. Essentially
the first query requires O(|x|) time, after which all following LCP queries with x can be
answered in O(log log n) time irrespective of which trie T (Ci) it is performed on. The term
n = |C| is the length of the indexed string t. The following lemma is implicit in the paper
by Cole et al. [13].

Lemma 2 (Cole et al.) Provided x has been preprocessed in time O(|x|), the LCP
data structure can answer rooted LCP queries on T (Ci) for any suffix of x in time
O(log log n) using space O(n+

∑q
i=1 |Ci|).

The full proof of this lemma is given in Section 3.5.

3.1.1 Unrooted LCP Queries

By default, the LCP data structure can only answer rooted LCP queries. Cole et al. [13]
describes how support for unrooted LCP queries on a compressed trie T (Ci) can be added
at the cost of increasing the size of the data structure by O(|Ci| log |Ci|).

Lemma 3 (Cole et al.) Provided x has been preprocessed in time O(|x|), unrooted
LCP queries on T (Ci) for any suffix of x can be performed in time O(log log n) by
using O(|Ci| log |Ci|) additional space.

The main idea in obtaining this lemma, is to create a heavy path decomposition of T (Ci)
and add the compressed subtries rooted in the root of every heavy path to the LCP
data structure. This causes the additional O(|Ci| log |Ci|) space. An unrooted LCP query
LCP(x, i, `), where ` is not the root of a heavy path, can in time O(1) be reduced to a rooted
LCP query on the subtrie of a descendant heavy path. We give the proof of this lemma in
Section 3.6.2.

We present a new result, showing that support for slower unrooted LCP queries on a
compressed trie T (Ci) can be added using linear additional space.

Lemma 4 Provided x has been preprocessed in time O(|x|), unrooted LCP queries on
T (Ci) for any suffix of x can can be performed in time O(log |Ci|+ log log n) by using
O(|Ci|) additional space.

To achieve this, we create a heavy path decomposition of T (Ci), and show that an unrooted
LCP query LCP(x, i, `) can be answered by following at most log |Ci| heavy paths from ` to
the location where the search for x stops, using constant time per heavy path. On the final
heavy path, we need a O(log log n) time predecessor query to determine the exact location
where the search stops. The full proof of this lemma is given in Section 3.6.3.

15

3.2 The Longest Prefix String

A very central and important concept of the LCP data structure is the notion of the longest
prefix string (identical to the highest overlap string in Cole et al. [13]). Given a non-empty
string set S ⊂ Σ∗ and a string x ∈ Σ∗, the longest prefix string in S for x, denoted lpsS(x),
is defined as follows:

Definition 1 (Longest Prefix String) Among those strings in S having the longest
maximum common prefix with x, lpsS(x) is a string which is lexicographically closest
to x, breaking ties arbitrarily.

Notice that for any x there is at least one, and at most two such strings in S, assuming S is
non-empty. The maximum common prefix between x and lpsS(x) is equal to maxpref(S, x),
and we will use hS(x) = |maxpref(S, x)| as a shorthand to denote the length of this prefix.
To find the longest common prefix string for x in a set S it is convenient to consider
the compressed, sorted trie for S. Refer to Figure 3.1 for an illustration of some longest
common prefix strings.

a

bx1

abc bbb

de

b

a f

b d fea

(a) x1 = aabc
ab

bb

b

x2

abc

deb

a f

b d fea

(b) x2 = bbabc
ab bbb

de

b

a f

b d fea

x3

c

(c) x3 = abc

ab bbb

deb

a f

b d
f

ea

x4

(d) x4 = bbbf

ab bbb

d
e

x5

b

a f

b d fea

(e) x5 = abd

ab bbb

deb

a f

b d fea

x6

b

(f) x6 = bbbdb

Figure 3.1: Illustrating the longest prefix string for the strings x1 = aabc, x2 = bbabc, x3 = abc, x4 = bbbf,
x5 = abd and x6 = bbbdb in the string set S = {abb, abdea, abdef, bbbb, bbbd, bbbfea}. In the
above figures of T (S), the strings of S having the longest maximum common prefix with xi are
marked in green. Among these strings, the bold ones are those lexicographically closest to xi.
That is, lpsS(xi) is a bold string. Recapitulating, we have that lpsS(x1) = abb, lpsS(x2) = bbbb,
lpsS(x4) = bbbfea, lpsS(x5) = abdea and lpsS(x6) = bbbd. There is a tie for x3, so lpsS(x3)
is either abb or abdea. The length of the shared prefixes (marked in bold) are hS(x1) = 1,
hS(x2) = 2, hS(x3) = 2, hS(x4) = 4, hS(x5) = 3 and hS(x6) = 4.

The cases in Figure 3.1 suggest that lpsS(x) is always one of the two strings lexicographi-
cally closest to x in S. This is confirmed by the following lemma.

16 THE LCP DATA STRUCTURE

Lemma 5 The longest prefix string lpsS(x) is lexicographically closest to x among all
strings in S.

Proof In case x ∈ S, lpsS(x) = x and the lemma clearly holds. In case x /∈ S assume
without loss of generality that lpsS(x) ≺ x. To obtain a contradiction, suppose that
there is a string y ∈ S different from lpsS(x), which is lexicographically closer to x
than lpsS(x), i.e.,

lpsS(x) ≺ y ≺ x .

Applying Corollary 1 yields that |maxpref(y, x)| ≥ |maxpref(lpsS(x), x)|. This contra-
dicts the assumption that lpsS(x) is the longest prefix string for x in S.

3.3 Building the LCP Data Structure

In the construction of the LCP data structure, a suffix tree T (C) is built for the indexed
string t, where C = suff(t). On T (C), a nearest common ancestor labeling scheme is
constructed. The construction of T (C) can be done in time O(n log σ) because the suffix
tree must be sorted lexicographically [37, 21]. The space usage is O(n), and constructing
the nearest common ancestor labels takes O(n) time [1] as this is the number of vertices
in T (C).

The data structure also stores the compressed tries T (C1), T (C2), . . . , T (Cq), where
each Ci is a set of substrings of t. On these tries, a weighted ancestor data structure is
built. Furthermore, let y be a substring of t. We define order(y) ∈ {1, . . . , n(n + 1)/2}
to be the position of y in the lexicographic ordering of all substrings of t. The value of
order(y) for a substring y ∈ Ci can be found by performing a pre-order traversal of the
sorted suffix tree. The order set of Ci is orderset(Ci) = {order(y) | y ∈ Ci}. A predecessor
data structure is constructed on orderset(Ci) for all Ci. Building the compressed tries takes
time O(log σ

∑q
i=1 |Ci|) and space O(

∑q
i=1 |Ci|). It takes O(

∑q
i=1 |Ci|) time and space to

construct the weighted ancestor and predecessor data structures [3, 39].
Concluding, the LCP data structure takes space O(n+

∑q
i=1 |Ci|), and can be built in

time O(log σ(n+
∑q

i=1 |Ci|)). Note that the data structure as described here only supports
rooted LCP queries. If support for unrooted LCP queries is required, further preprocessing
may be necessary depending on the type of support to add. Adding support for unrooted
LCP queries is described in Section 3.6.

3.4 Preprocessing a Query String

Before performing a query with a string x, it must be preprocessed to obtain two parameters
for x that is needed to perform LCP queries in O(log log n) time. These two parameters
are:

1. The longest prefix string in C = suff(t) for x, i.e., lpsC(x).

2. The length of the maximum common prefix hC(x) = |maxpref(C, x)|.

17

We preprocess x by searching T (C) for x from the root, matching the characters of x one
by one. Eventually the search stops, and one of the following two cases occur.

(a) The search stops in a non-branching vertex (i.e. a implicit vertex or a leaf). In this
case the longest prefix string lpsC(x) will be either the left leaf or the right leaf in
the subjacent subtree. Let cx and cT be the next unmatched character of x and T (C),
respectively. If x is a prefix of some string in C, it is fully matched when the search
stops and cx = ε. If the search stopped in a leaf, cT = ε. We let v be the next explicit
vertex in T (C), descendant of the location where the search stopped. Then the longest
prefix string in C for x can be determined as

lpsC(x) =

{
leftleaf(v) if cx ≤ cT
rightleaf(v) if cx > cT

.

Notice that the only case in which cx = cT is when cx = cT = ε and hence x ∈ C. In
case cT = ε, the search stopped in a leaf, so leftleaf(v) = rightleaf(v) = v = lpsC(x).

(b) The search stops in a branching vertex v ∈ T (C). In this case we need a predecessor
query to find the longest prefix string for x, effectively determining the sorting of x in
relation to the children of v. As before let cx be the next unmatched character of x
(possibly ε). Assuming a predecessor data structure has been built for v over the first
character on the edges to its children, we can choose lpsC(x) as

lpsC(x) ∈ {rightleaf(PRED(cx)), leftleaf(SUCC(cx))} .

Notice that the set is non-empty, since either PRED(cx) or SUCC(cx) must exist.

In both cases, the length of the maximum common prefix hC(x) = |maxpref(C, x)| is
found as the number of matched characters in x. We use O(|x|) time to search for x and
obtain hC(x). In the first case, it takes constant time to find lpsC(x). The predecessor
query in the second case takes time O(log log σ), since the alphabet is the universe for
the predecessor query. Thus, we have established that preprocessing a string x requires
O(|x|+ log log σ) time.

3.4.1 Preprocessing All Suffixes of a Query String

In order to support unrooted LCP queries for x, we will need access to lpsC(x′) and hC(x′)
for an arbitrary suffix x′ of x. The above method suggests that preprocessing each of
the |x| suffixes of x to determine these could take time Θ

(∑|x|
i=1 log log σ + | suffi(x)|

)
=

Θ
(
|x| log log σ + |x|2

)
. However, as shown in the following, we can exploit techniques

used in linear time construction of generalized suffix trees to reduce the preprocessing time.
A generalized suffix tree is a trie T (suff(S)) for a set of strings S ⊂ Σ∗. Ukkonen’s

Algorithm [37] can be used to construct generalized suffix trees on-line, inserting strings
from S one at a time. The algorithm does so by extending an already created generalized
suffix tree T i for the string set S = {t0, t1, . . . , ti} with all suffixes of a new string ti+1,

18 THE LCP DATA STRUCTURE

obtaining a new suffix tree T i+1 that also contains all suffixes of ti+1. For our purposes,
the algorithm can be changed to not modify T i, thus only determining the locations in T i

where all suffixes of ti+1 branched from the tree. This can be done in time O(|ti+1|) [21, p
116]. Since T i is not changed, this effectively searches for all suffixes of ti+1 in T i.

Now, if we consider T (C) as a generalized suffix tree, we can in time O(|x|) determine
the location `x′ ∈ T (C) where each suffix x′ of x branched from the tree by searching
for all suffixes of x using Ukkonen’s Algorithm. By storing these locations, hC(x′) =
|maxpref(C, x′)| = |`x′ | is available in constant time. When needed, we can determine
lpsC(x′) in time O(log log σ) as described in the previous section, by using `x′ ∈ T (C) as
the location where the search for x′ stopped. We have thus established the following
lemma.

Lemma 6 Provided that x has been preprocessed in time O(|x|), hC(x′) is available
in constant time, and lpsC(x′) can be determined in time O(log log σ) for any suffix x′

of x.

This method also supports constant time lookup of lpsC(x′) by preprocessing all suffixes of
x in time O(|x| log log σ).

3.5 Rooted LCP Queries

In this section we show Lemma 2. The idea in answering a rooted LCP query for x on
T (Ci) is to find a string z in Ci that x follows longest. We identify the leaf of T (Ci)
that corresponds to z and the distance h = |maxpref(x, z)|. We can then use a weighted
ancestor query WA(z, h) to determine the location where x diverges from z. This location
is the answer to the rooted LCP query LCP(x, i). See Figure 3.2 for an illustration.

We will use the longest prefix string for x in Ci, lpsCi(x), as the string z. The distance
h is then equal to hCi(x) = |maxpref(lpsCi(x), x)|. In order to determine lpsCi(x) and
hCi(x), we use lpsC(x) and hC(x), which are available thanks to the preprocessing of x.

We find lpsCi(x) using a number of important lemmas. First, Lemma 7 and Corollary 2
show that we can determine the distance that x follows a string y ∈ Ci in constant time.

T (Ci)

z = lpsCi
(x)

h = hCi
(x)

LCP(x, i)

x
WA(z, h)

Figure 3.2: Illustrating how a rooted LCP query for x on T (Ci) is answered by a weighted ancestor query on
a string z ∈ Ci that x follows longest.

19

Lemma 8 shows that we can identify two candidate strings in Ci in time O(log log n),
at least one of which is a valid choice for lpsCi(x). In Lemma 9, we use Corollary 2 to
determine which of the candidate strings that x follows longest, thereby obtaining a valid
choice for lpsCi(x) as well as hCi(x).

Lemma 7 Given a suffix y ∈ C of t, the distance h that a string x ∈ Σ∗ follows y can
be determined in constant time as

h = |maxpref(x, y)| = min(| NCA(lpsC(x), y)|, hC(x))

provided that lpsC(x) and hC(x) are available.

Proof By Lemma 5, lpsC(x) is lexicographically closest to x among all strings in C, so
either

1. x � lpsC(x) � y or y � lpsC(x) � x. In this case, Corollary 1 yields

h = |maxpref(x, y)| = min
(
|maxpref(lpsC(x), y)|, |maxpref(x, lpsC(x))|

)
.

2. y � x � lpsC(x) or lpsC(x) � x � y. In this case, Corollary 1 yields

|maxpref(y, lpsC(x))| = min
(
|maxpref(y, x)|, |maxpref(x, lpsC(x))|

)
.

By definition, |maxpref(x, lpsC(x))| ≥ |maxpref(y, x)| for any y ∈ C, so

h = |maxpref(y, x)| = |maxpref(y, lpsC(x))|
= min

(
|maxpref(lpsC(x), y)|, |maxpref(x, lpsC(x))|

)
.

For both of the above cases we have that

h = min
(
|maxpref(lpsC(x), y)|, |maxpref(x, lpsC(x))|

)
.

By definition, |maxpref(x, lpsC(x))| = hC(x), and since maxpref(lpsC(x), y) can be
determined in constant time by a nearest common ancestor query on the leaves of
T (C) corresponding to lpsC(x) and y, we have that

h = min
(
| NCA(lpsC(x), y)|, hC(x)

)
.

This concludes the proof.

We extend the lemma by showing that the distance that x follows a substring of t can also
be determined in constant time.

Corollary 2 Given a suffix y ∈ C of t, the distance h that a string x ∈ Σ∗ follows
prefi(y), can be determined in constant time as

h = |maxpref(x, prefi(y))| = min(i, | NCA(lpsC(x), y)|, hC(x))

provided that lpsC(x) and hC(x) are available.

20 THE LCP DATA STRUCTURE

Proof The distance that x follows prefi(y) is at most |prefi(y)| = i, and since x
follows y at least as long as x follows prefi(y), the lemma follows from Lemma 7.

Using the predecessor data structure for orderset(Ci), we can in time O(log log n2) =
O(log log n) determine the predecessor and successor string for y ∈ C in the lexicographic
ordering of Ci. We denote these strings as PREDCi(y) and SUCCCi(y) and the following
lemma shows that for y = lpsC(x), at least one of these strings is a valid choice for lpsCi(x).

Lemma 8 Either PREDCi(lpsC(x)) or SUCCCi(lpsC(x)) is a valid choice for lpsCi(x).

Proof We let x− = PREDCi(lpsC(x)) and x+ = SUCCCi(lpsC(x)). By definition, x−

and x+ are the two strings in Ci lexicographically closest to lpsC(x). We consider the
following cases for the lexicographic ordering of x.

1. x− ≺ x ≺ x+. In this case x− and x+ are also the two strings in Ci lexico-
graphically closest to x, and by Lemma 5 one of them is a valid choice for
lpsCi(x).

2. x � x−. We show that x− is a valid choice for lpsCi(x). To obtain a contradiction,
assume that x− is not a valid choice for lpsCi(x). Then there is a valid choice
z ∈ Ci different from x− for lpsCi(x). It must be the case that z ≺ x−, since
otherwise x− would be lexicographically closer to x than z, contradicting that z
is a valid choice for lpsCi(x). Since x− is not a valid choice for lpsCi(x), it must
hold that either

a) x follows z longer than x−, or

b) z is lexicographically closer to x than x−, i.e., x � z ≺ x−.

Let z′ ∈ C denote a suffix of t having z as a prefix. In the first case, x follows z′

longer than x−, and thus also longer than lpsC(x) because of the lexicographic
ordering. In the second case z′ is lexicographically closer to x than lpsC(x) since
x � z ≺ x− � lpsC(x). Both cases contradict the definition of lpsC(x). This
shows that x− must be a valid choice for lpsCi(x).

3. x � x+. In this case x+ is a valid choice for lpsCi(x). The argument is symmetri-
cal to the previous.

The following lemma is obtained by combining the previously shown lemmas. The lemma
provides lpsCi(x) and hCi(x) which are needed in order to answer the rooted LCP query
with a weighted ancestor query.

Lemma 9 Let C = suff(t) be the set of all suffixes of t. Given lpsC(x) and hC(x),
we can determine lpsCi(x) and hCi(x) in time O(log log n), provided that a nearest
common ancestor data structure has been built for the suffix tree T (C).

21

Proof We first obtain the strings x− = PREDCi(lpsC(x)) and x+ = SUCCCi(lpsC(x)) in
time O(log log n). It follows from Lemma 8 that at least one of x− and x+ is a valid
choice for lpsCi(x). Let y− and y+ denote suffixes in C having x− and x+ as a prefix,
respectively.

From Lemma 7, the distance that x follows y− and y+ is upper bounded by the
distance that lpsC(x) follows the strings. We can tell which of the strings x follows
farthest by comparing the length of the maximum common prefix between lpsC(x) and
y− to that between lpsC(x) and y+ as determined by two nearest common ancestor
queries. From the lengths of the maximum common prefixes, we select the correct
choice for lpsCi(x) between x− and x+. Thus,

lpsCi(x) =

{
x− if | NCA(lpsC(x), y−)| ≥ | NCA(lpsC(x), y+)|
x+ if | NCA(lpsC(x), y−)| < | NCA(lpsC(x), y+)|

.

Note that in case y− and y+ has an equally long maximum common prefix with lpsC(x),
we select x−. This is because x ≺ x− ≺ lpsC(x) ≺ x+ is a possible lexicographical
ordering for the strings. This may happen if x− /∈ C is a prefix of lpsC(x), since
a string is lexicographically ordered before any other string of which it is a prefix.
On the contrary, x− ≺ lpsC(x) ≺ x+ ≺ x is not a possible lexicographical ordering
because there would be a string in C having x+ as a prefix, contradicting that lpsC(x) is
lexicographically closest to x in C. Thus, x− is always at least as close lexicographically
to x as x+.

The maximum distance, hCi(x), that x follows a string in Ci equals the distance
that x follows lpsCi(x). Thus, hCi(x) is the maximum distance that x follows either x−

or x+ since the maximum of these was the correct choice for lpsCi(x). We determine
the distances using Corollary 2 as

hCi(x) = max
(
|maxpref(x, x−)| , |maxpref(x, x+)|

)
= max

(
min

(
| NCA(lpsC(x), y−)|, hC(x), |x−|

)
,

min
(
| NCA(lpsC(x), y+)|, hC(x), |x+|

))
.

Finding x+ and x− can be done in time O(log log n). The nearest ancestor queries can
be answered in constant time. Hence the total time spent is O(log log n).

We now describe how to answer a rooted LCP query on T (Ci) in time O(log log n) for
a suffix x′ of a string x, assuming that x has been preprocessed in time O(|x|). To
answer a rooted LCP query LCP(x′, i), we first determine lpsC(x′) and hC(x′) in time
O(log log σ) = O(log log n) as described in Lemma 6 for use in the following lemmas. Then
we determine the leaf lpsCi(x

′) in T (Ci) and hCi(x
′) in time O(log log n) as described by

Lemma 9. Knowing both of these parameters, the location where x′ diverges from T (Ci)
can be found by a weighted ancestor query on T (Ci), determining the ancestor of lpsCi(x

′)
having a depth (string length) equal to hCi(x), i.e., WA(lpsCi(x

′), hCi(x)) on T (Ci). Thus, a
rooted LCP query can be answered in time O(log log n), concluding the proof of Lemma 2.

22 THE LCP DATA STRUCTURE

3.5.1 Example of a Rooted LCP Query

In this section we illustrate and describe each of the steps necessary to answer a rooted
LCP query for a small example. The goal is to answer a rooted LCP query for the
string x = cacba on a compressed trie T (Ci). We assume that the LCP data struc-
ture is built for the string t = bccbbccd, having the 28 unique substrings shown in
Figure 3.3(a) with their lexicographic order number. The LCP data structure is built as
previously described, producing the sorted suffix tree T (C) for all suffixes C = suff(t) =
{bbccd, bccbbccd, bccd, cbbccd, ccbbccd, ccd, cd, d} of t. Furthermore, the suffixes in
T (C) are labeled by their lexicographic order number and a nearest common ancestor
data structure has been built for T (C).

First, we preprocess the query string x to find the longest prefix string for x among the
suffixes of t, lpsC(x), and the length of the maximum common prefix hC(x). As shown in
Figure 3.3(b), we find that lpsC(x) = cbbccd which has order number 19. The length of
the maximum common prefix is hC(x) = 1.

Next, we consider the compressed trie T (Ci) (see Figure 3.3(c)) storing the substrings
Ci = pref3(suff(t)) = {bbc, bcc, cbb, ccb, ccd, cd, d}. We assume that T (Ci) is stored in
the LCP data structure, and hence a weighted ancestor data structure has been built for
T (Ci). Furthermore, a predecessor data structure has been prepared for orderset(Ci) =
{3, 7, 16, 21, 26, 27, 28}, containing the lexicographic order numbers of the strings in Ci.

We now describe how a rooted LCP query LCP(x, i) for the string x on the compressed
trie T (Ci) is answered. First, we identify the longest prefix string for x in Ci, lpsCi(x) and
the length hCi(x) as follows. The predecessor and successor of lpsC(x) (order number 19)
in the orderset of Ci are the strings x− = cbb (order number 16) and x+ = ccb (order
number 21). By Lemma 8 one of these strings is a valid choice for lpsCi(x). To determine
which, we use Corollary 2 to find the distance that x follows x− and x+ respectively. This
step consists of performing two nearest common ancestor queries NCA(y−, lpsC(x)) and
NCA(y+, lpsC(x)) on the suffix tree, where y− and y+ are suffixes of t having x− and x+ as
a prefix, respectively. In this way, we find that x follows both x− and x+ for a distance of 1,
and the longest prefix string in Ci for x is x−. The answer to the rooted LCP query LCP(x, i)
is the ancestor of x− of depth 1. This location can be found by a weighted ancestor query
WA(x−, 1) on T (Ci) as shown in Figure 3.3(d).

3.6 Unrooted LCP Queries

In the following two subsections, we describe two different ways of answering an un-
rooted LCP query LCP(x, i, `) on a trie T (Ci). The first method is the one stated by
Cole et al. [13], which requires O(|Ci| log |Ci|) additional space to support unrooted
queries in time O(log log n) on a trie T (Ci). This method results in Lemma 3. The second
method is a new solution that requires O(|Ci|) additional space to add support for unrooted
LCP queries in time O(log |Ci|+ log log n) on T (Ci). This method results in Lemma 4.

23

b1
bb2
bbc3
bbcc4
bbccd5
bc6
bcc7
bccb8
bccbb9
bccbbc10
bccbbcc11
bccbbccd12
bccd13
c14

cb15
cbb16
cbbc17
cbbcc18
cbbccd19
cc20
ccb21
ccbb22
ccbbc23
ccbbcc24
ccbbccd25
ccd26
cd27
d28

(a) The 28 unique substrings of t and their
lexicographic order number. The suffixes
of t are marked in bold.

5

12 13

19 27

25 26

28x

b c d

b
c
c
d

c
c

b
b
c
c
d

d

acba

bbccd

c d

b
b
c
c
d

d

(b) The position of x = cacba in the suffix tree for
t, i.e., T (C) with C = suff(t). The longest pre-
fix string in C for x is lpsC(x) = cbbccd and is
highlighted in green. It is also seen that hC(x) = 1.

3 7 16 27

21 26

28

b c d

b
c c
c

bb c d

b d

(c) A compressed trie T (Ci) containing a set Ci
of substrings of t. Here Ci = pref3(suff(t)).

3 7

LCP(x, i)

16

x−

27

21

x+

26

28

y−

y+

b c d

b
c c
c

bb c d

b d

ccd

b
c
c
d

W
A(
x
− ,
1)

(d) Finding LCP(x, i) by a weighted ancestor query on
T (Ci), using that lpsCi

(x) = x− and hCi(x) = 1
has been determined.

Figure 3.3: Illustrating how to answer a rooted LCP query LCP(x, i) on a compressed trie T (Ci) stored in the
LCP data structure. The indexed text in this example is t = bccbbccd and the query string is
x = cacba.

24 THE LCP DATA STRUCTURE

3.6.1 Prerequisites

Before describing the details of the two solutions, we first account for the prerequisites
they share. We assume that the LCP data structure has been constructed as described in
Section 3.3, i.e., in particular a nearest common ancestor data structure has been built for
the suffix tree T (C).

Both the method by Cole et al. [13] and our new method rely on a heavy path de-
composition H of T (Ci) to add support for unrooted LCP queries on T (Ci). As described
in Section 2.2.1, the top of each heavy path H ∈ H is extended until every light edge
contains exactly one single character. This implies that the root of a heavy path H, which
we denote root(H), is not necessarily an explicit vertex in T (Ci). To be able to index into a
heavy path H ∈ H, we store an array containing for each explicit vertex v ∈ H, the string
length of the string starting in root(H) and ending in v. By building a predecessor data
structure for this array, we can find the location on H at string distance i from root(H)
by a single predecessor query to determine the explicit parent vertex for the location.
Storing these predecessor data structures requires O(|Ci|) additional space, since each
vertex in T (Ci) is contained in at most one heavy path. Indexing into the array for H
can be done in constant time, and a predecessor query on the array can be answered in
time O(log log maxx∈Ci |x|) = O(log log n), since the size of the universe is bounded by the
length of the longest string in Ci. Constructing the heavy path decomposition and the
predecessor data structures takes time O(|Ci|). We assume this is done when the LCP data
structure is built.

For both methods of answering unrooted LCP queries, the following lemma is very central.

Lemma 10 Given a location ` ∈ T (Ci) on a heavy path H ∈ H and a string x ∈ Σ∗,
we let h denote the distance that x follows H starting in `. Provided that x has been
preprocessed in time O(|x|), we can determine h in constant time.

Proof Observe that the leaf of each heavy path H ∈ H, leaf(H), corresponds to a
substring of t, i.e., the string starting in root(T (Ci)) and ending in leaf(H). For each
heavy path H ∈ H, we store the position pos(yH) of a suffix yH of t having the string
leaf(H) as a prefix. Since leaf(H) is a substring of t, there must be at least one suffix
yH ∈ C. From the definition, any location ` on H is a prefix of both leaf(H) and yH .

Let z` denote the substring of t starting in ` and ending in leaf(H) of length
|z`| = | leaf(H)| − |`|. We will use Corollary 2 to determine the distance that x follows
z`, which requires us to identify a suffix z′` of t having z` as a prefix.

To that end, note that leaf(H) = ` · z` vpref yH , so z` is a prefix of the string
obtained by removing the prefix ` from yH . Thus, we obtain z′` as the suffix of
t shifted |`| positions to the right from yH , effectively stripping ` off yH . That is,
z′` = suffpos(yH)+|`|(t), so we have that

z` = pref |z`|
(
z′`
)

= pref | leaf(H)|−|`|
(
suffpos(yH)+|`|(t)

)
.

25

Thus by Corollary 2 we can determine the distance h that x follows z` in constant
time as

h = |maxpref(x, z`)|

= min
(
|z`| ,

∣∣NCA
(
lpsC(x), z′`

)∣∣ , hC(x)
)

= min
(
| leaf(H)| − |`| ,

∣∣NCA
(
lpsC(x), suffpos(yH)+|`|(t)

)∣∣ , hC(x)
)
.

Figure 3.4 is an illustration of the cases where h equals |z`|, | NCA(lpsC(x), z′`)| and
hC(x), respectively.

lpsC(x)

z′`

z`

h

x

(a) h = |z`|.

lpsC(x)
z′`

z`

h

NCA(lpsC(x), z
′
`)

x

(b) h = | NCA(lpsC(x), z′`)|.

lpsC(x)

z′`

z`

h

x

(c) h = hC(x).

Figure 3.4: Determining h by considering the possible cases in the suffix tree for t, T (C). If z` is a prefix of
x (see Figure 3.4(a)), we have h = |maxpref(x, z`)| = |z`|. In case z` is not a prefix of x, there
are two cases two consider. Either x diverges from z` on a path in C (see Figure 3.4(b)). In this
case lpsC(x) is located in the same off-path subtrie that x branches off into. Consequently, the
maximum prefix between x and z` can be found by a nearest common ancestor query between
lpsC(x) and z′`. Otherwise, x diverges from z` on a path not in C (or x is fully matched on
z`). See Figure 3.4(c). In this case, the maximum common prefix between x and z` equals the
maximum common prefix between x and any string in C, i.e., h = hC(x).

3.6.2 The Solution by Cole et al.

The main idea in the method described by Cole et al. [13] for answering an unrooted
LCP query LCP(x, i, `) is to reduce the query to a rooted LCP query on a subtrie of T (Ci)
included in the LCP data structure. A simple way to achieve this would be to include every
subtrie of T (Ci) in the LCP data structure. The unrooted LCP query LCP(x, i, `) could then
be answered by performing a rooted LCP query on the subtrie of T (Ci) rooted at location `.
Unfortunately, this approach could require Θ(|Ci|n) space to store the additional subtries
in the LCP data structure, since a string y′ ∈ Ci is present in |y′| ≤ n subtries.

To reduce this space usage, we will only include selected subtries of T (Ci) in the LCP
data structure. More precisely, for each heavy path H in the heavy path decomposition H
of T (Ci), we add the subtrie of T (Ci) rooted at root(H) to the LCP data structure. The
additional space required to store the predecessor and weighted ancestor data structures

26 THE LCP DATA STRUCTURE

for these subtries only amounts to O(|Ci| log |Ci|), since each of the |Ci| strings is contained
in at most log |Ci| of these subtries. However, this only yields support for unrooted LCP
queries starting in a location `, which is also the root of some heavy path H ∈ H. For all
other locations in T (Ci), we will reduce the unrooted LCP query for x to a rooted LCP
query for a suffix of x starting in the root of a another heavy path. More precisely, we
preprocess T (Ci) as follows.

Preprocessing of T (Ci): For all heavy paths H ∈ H, Troot(H)(Ci) is added to
the LCP data structure to support unrooted LCP queries starting in root(H).

Adding a subtrie Troot(H)(Ci) to the LCP data structure consists of constructing the pre-
decessor data structure for the orderset over the strings starting in root(H) and ending
in a leaf. Additionally, a weighted ancestor data structure is constructed on the vertices
of Troot(H)(Ci). The additional preprocessing requires O(|Ci|) additional space for each
subtrie of T (Ci) added to the LCP data structure.

We now describe how to answer an unrooted LCP query LCP(x, i, `) when ` is not a
top location of a heavy path in T (Ci). Let H denote the heavy path in H that ` is located
on. The search for x follows H some string distance h ≤ |x| from ` after which the search
either stops (x is fully matched) or leaves H. Using Lemma 10 we can compute h in
constant time. Knowing h, we can determine the answer to LCP(x, i, `) in time O(log log n)
as follows.

Using h to Find LCP(x, i, `) We first obtain the location `h on H at distance h from `
by performing a predecessor query on H to obtain the explicit parent vertex of `h. The
answer can then be obtained as described below.

1. If h = |x|, x is fully matched on H and we have that LCP(x, i, `) = `h.

2. If h < |x|, the search for x leaves H at location `h, and there are two possibilities to
consider:

a) `h has an outgoing light edge (`h, `
′
h) labeled with the next unmatched character

x[h+1]. Since `′h is the root of another heavy path inH, the answer to LCP(x, i, `)
can be found by a rooted LCP query for x’s unmatched suffix suffh+2(x) on the
subtrie T`′h(Ci). See Figure 3.5 for an illustration of this case.

b) `h has no outgoing edge labeled x[h + 1], so the pattern cannot follow T (Ci)
longer. In this case, we have that LCP(x, i, `) = `h.

In any case, LCP(x, i, `) can be determined in O(log log n) time. This completes the proof
of Lemma 3.

27

T (Ci) root(H)

leaf(H)

` h

H

`h
`′h

T`′
h
(Ci)

Figure 3.5: Illustrating how to answer an unrooted LCP query from the location ` ∈ T (Ci) using the method
described by Cole et al. [13]. The illustration shows the situation where the search for x leaves
the heavy path H on a light edge and proceeds in the subtrie T`′

h
(Ci).

3.6.3 A New Solution

When performing a LCP query LCP(x, i, `), the search path for x starting in ` traverses a
number of heavy paths in T (Ci) as shown in Figure 3.6. The solution by Cole et al. [13]
only considers the first of these heavy paths, and uses a rooted LCP query to complete the
search. The main idea of our new solution is to follow all the O(log |Ci|) heavy paths that
the search path passes through, thereby avoiding the need for a rooted LCP query and the
additional space overhead caused by adding subtries of T (Ci) to the LCP data structure.
Intuitively, for each heavy path intersected by the search path, the next heavy path can be
identified in constant time using Lemma 10. On the final heavy path, a predecessor query
is needed to determine the exact location where the search path stops.

For a heavy path H, we let h denote the distance which the search path for x starting
in ` follows H. Referring to Figure 3.6, we can compute the answer to an unrooted LCP
query recursively as follows. To answer LCP(x, i, `) we identify the heavy path H of T (Ci)
that ` is part of and compute the distance h in constant time as described by Lemma 10.
If x leaves H on a light edge, indexing distance h into H from ` yields an explicit vertex
v. At v, a constant time lookup for x[h+ 1] determines the light edge on which x leaves
H. Since the light edge has a label of length one, the next location `′ on that edge is the
root of the next heavy path. We continue the search for the remaining suffix of x from `′

recursively by a new unrooted LCP query LCP(suffh+2(x), i, `′). If H is the heavy path on
which the search for x stops, the location at distance h (i.e., the answer to the original
LCP query) is not necessarily an explicit vertex, and may not be found by indexing into
H. In that case a predecessor query for h is performed on H to determine the preceding
explicit vertex and thereby the location LCP(x, i, `). Answering an unrooted LCP query
entails at most log |Ci| recursive steps, each taking constant time. The final recursive step
may require a predecessor query taking time O(log log n). Consequently, an unrooted LCP

28 THE LCP DATA STRUCTURE

query can be answered in time O(log |Ci| + log log n) using O(|Ci|) additional space to
store the predecessor data structures for each heavy path. This completes the proof of
Lemma 4.

T (Ci) h

H

root(H)

leaf(H)

v

`

`′

LCP(x, i, `)

At most log |Ci| heavy paths.

x

Figure 3.6: Illustrating how an unrooted LCP query LCP(x, i, `) can be answered by recursively following at
most log |Ci| heavy paths in T (Ci).

4

AN UNBOUNDED WILDCARD INDEX

USING LINEAR SPACE

In this chapter we show Theorem 1 by applying an ART decomposition on the suffix tree
for t and storing the top and bottom trees in the LCP data structure. For completeness,
we review the ART decomposition in Section 4.1 before describing the wildcard index in
Section 4.2.

4.1 ART Decomposition

The ART decomposition introduced by Alstrup et al. [2] decomposes a tree into a single
top tree and a number of bottom trees. The construction is parameterized by an integer
χ > 0 and defined by two rules:

1. A bottom tree is a subtree rooted in a vertex of minimal depth such that the subtree
contains no more than χ leaves.

2. Vertices that are not in any bottom tree make up the top tree.

The decomposition has the following key property.

Lemma 11 (Alstrup et al.) The ART decomposition with parameter χ for a rooted
tree T with n leaves produces a top tree with at most n

χ+1 leaves.

See Figure 4.1 for an illustration of an ART decomposition of a tree.

4.2 Obtaining the Index

Applying an ART decomposition on the suffix tree for t, T (C), with χ = log n and C =
suff(t), we obtain a top tree T ′ and a number of bottom trees B1, B2, . . . , Bq each of size
at most log n. From Lemma 11, T ′ has at most n

logn leaves and hence O(n
logn) vertices

since T ′ is a compressed trie. To facilitate the search, the top and bottom trees are stored

30 AN UNBOUNDED WILDCARD INDEX USING LINEAR SPACE

(a) A tree T .

B1

B2

B3

B4

B5 B6 B7

B8 B9

T ′

(b) ART decomposition of T .

Figure 4.1: Illustrating the ART decomposition with χ = logn on a tree T with n = 16 leaves. The ART
decomposition of T consists of the bottom trees B1, B2, . . . , B9, each having at most logn = 4
leaves. The top tree T ′ (marked in bold) has 3 leaves, which is in accordance with Lemma 11.

in a LCP data structure, noting that these compressed tries only contain substrings of t.
Using Lemma 4, we add support for unrooted O(logχ + log log n) = O(log log n) time
LCP queries on the bottom trees using O(n) additional space in total. For the top tree
we apply Lemma 2 to add support for unrooted LCP queries in time O(log log n) using
O(n

logn log n
logn) = O(n) additional space.

In order to describe the search algorithm, we introduce the following notation. The
operation extract(A) removes and returns an element from the set A. By nextlocations(`′),
we denote the set of all children of `′ where the corresponding string is one character
longer than the string for `′. We let hasbottom(`′, c) be true if there is a bottom tree
attached to `′ with an edge labeled with character c, and bottom(`′, c) denotes the index
of that bottom tree in the LCP data structure. The set bottoms(`′) contains the root of all
bottom trees attached to `′. For any location `′, we assume that the index i of the trie
T (Ci) containing `′ is denoted trie(`′).

Algorithm 1 shows how to perform the search in the index. LCP queries are used to
search for the subpattern pi. If pi is not fully consumed in `′, the search cannot continue
in the current tree. In this case, we check if there is a bottom tree Bi joined to `′ labeled
with the next unmatched character of pi. If so, we search for the remaining part of the
subpattern from the root of Bi by a new LCP query. When pi has been fully matched, the
search consumes the next wildcard character in the pattern by branching to all children
and any bottom trees of the current location. The resulting locations are added to A,
paired with the index of the next subpattern to match. The set R stores the locations
corresponding to the occurrences of p in t.

The algorithm shows that two LCP queries may be performed for each subpattern.
This, however, does not influence the asymptotic complexity, so O(σi) LCP queries are
performed for the subpattern pi. They each take time O(log log n), which concludes the
proof of Theorem 1.

31

Algorithm 1 Searching the index from Theorem 1 to find the occurrences a pattern
p = p0 ∗ p1 ∗ . . . ∗ pj using the LCP data structure. If a subpattern is not fully matched, the
algorithm checks if there is a bottom tree in which the search can continue.
A ← {(0, root(T ′))}
R ← ∅
while A 6= ∅ do

(i, `)← extract(A)
`′ ← LCP(pi, trie(`), `)
if |`′| − |`| = |pi| then

if i = j then
R ← R∪ {`′}

else
A ← A∪ {(i+ 1, `′′) | `′′ ∈ nextlocations(`′) ∨ `′′ ∈ bottoms(`′)}

else
c← pi[|`′| − |`|+ 1]
if hasbottom(`′, c) then
`B ← LCP(suff |`′|−|`|+2(pi), bottom(`′, c))

if (|`′| − |`|+ 1) + |`B| = |pi| then
if i = j then
R ← R∪ {`B}

else
A ← A∪ {(i+ 1, `′′) | `′′ ∈ nextlocations(`B)}

Report descendant leaves of locations in R

5

A TIME-SPACE TRADE-OFF

FOR k-BOUNDED WILDCARD INDEXES

In this chapter we will show Theorem 2. We first introduce the heavy α-tree decomposition
in Section 5.1. In Section 5.2 we use the decomposition to define wildcard trees, leading
to the wildcard index with a time-space trade-off described in Section 5.3. Finally in
Section 5.4, we apply the LCP data structure to improve the query time and obtain a
generalization of the wildcard index by Cole et al. [13].

5.1 Heavy α-Tree Decomposition

The heavy α-tree decomposition is a generalization of the well-known heavy path decompo-
sition introduced by Harel and Tarjan [22]. The purpose is to decompose a rooted tree
T into a number of heavy trees joined by light edges, such that a path from any location
to the root of T traverses at most a logarithmic number of heavy trees. For use in the
construction, we define a proper weight function on the vertices of T to be a function
satisfying

weight(v) ≥
∑

w child of v

weight(w) .

Observe that using the number of vertices or the number of leaves in the subtree rooted
at v as the weight of v satisfies this property. The decomposition is parameterized by an
integer α ≥ 0 and constructed by classifying edges in T as being heavy or light according
to the following rule.

Classification Rule: For every vertex v ∈ T , the edges to the α heaviest
children of v (breaking ties arbitrarily) are heavy, and the remaining edges are
light.

Observe that for α = 1, this results in a heavy path-decomposition. Given a heavy α-tree
decomposition of T , we define lightdepth(v) to be the number of light edges on a path
from the vertex v ∈ T to the root of T . The key property of this construction is captured
by the following lemma.

34 A TIME-SPACE TRADE-OFF FOR K-BOUNDED WILDCARD INDEXES

Lemma 12 For any heavy α-tree decomposition with α > 0 of a rooted tree T , and
for any vertex v ∈ T

lightdepth(v) ≤ logα+1 weight(root(T)) .

Proof Consider a light edge from a vertex v to its child w. We prove that weight(w) ≤
1

α+1 weight(v), implying that lightdepth(v) ≤ logα+1 weight(root(T)). To obtain a
contradiction, suppose that weight(w) > 1

α+1 weight(v). In addition to w, v must
have α heavy children each of which has a weight greater than or equal to weight(w).
Hence

weight(v) ≥ (1 + α) · weight(w) > (1 + α) · 1

α+ 1
weight(v) = weight(v)

which is a contradiction.

Lemma 12 holds for any heavy α-tree decomposition obtained using a proper weight
function on T . In the remaining chapters of the thesis we will assume that the weight
of a vertex is the number of leaves in the subtree rooted at v. Given a heavy α-tree
decomposition of a rooted tree T , we define lightheight(T) to be the maximum light depth
of a vertex in T , and remark that for α = 0, lightheight(T) = height(T). See Figure 5.1 for
two different examples of heavy α-tree decompositions of a tree.

For a vertex v in a compressed trie T (S), we let lightstrings(v) denote the set of strings
starting in one of the light edges leaving v. That is, lightstrings(v) is the union of the set
of strings in T`(S) for all locations ` on the light edges from v where |`| = |v|+ 1.

(a) A heavy α-tree decomposition of a tree T . (b) Another heavy α-tree decomposition of T .

Figure 5.1: Illustrating the heavy α-tree decomposition for α = 2 on a tree with n = 38 leaves. In the two
decompositions, the maximum light depth is 3 and 2, respectively, which is in accordance with
Lemma 12.

5.2 Wildcard Trees

We introduce the (β, k)-wildcard tree, denoted T kβ (C ′), where 1 ≤ β < σ and k > 0 are
chosen integer parameters. This data structure stores a set C ′ of modified substrings of the

35

indexed text t in a compressed trie. The key property is that the search for a pattern p with
at most k wildcards branches to at most β locations in T kβ (C ′) when consuming a single
wildcard of p. In particular for β = 1, the search for p never branches and the search time
becomes linear in the length of p.

For a vertex v, we define the wildcard height of v to be the number of wildcards on the
path from v to the root. Intuitively, given a wildcard tree that supports i wildcards, support
for an extra wildcard is added by joining a new tree to each vertex v having wildcard
height i with an edge labeled ∗. This new tree is searched if a wildcard is consumed in v.
More precisely, T kβ (C ′) is built recursively as follows.

Construction of T iβ(S): Produce a heavy (β − 1)-tree decomposition of T (S),
then for each internal vertex v ∈ T (S), join the root of T i−1β (suff2(lightstrings(v))

to v by an edge labeled ∗. Let T 0
β (S) = T (S).

T k−1
β (suff2(lightstrings(v)))

∗

∗

∗

∗

∗∗

∗

∗

∗

∗
v

∗

β − 1 lightstrings(v)

T 0
β (C

′)

T 1
β (C

′)

Tkβ (C
′)

Figure 5.2: Abstract illustration of the recursive construction of the wildcard tree T kβ (C′). The final tree
consists of compressed tries joined by edges labeled ∗ and organized into k layers.

As illustrated by Figure 5.2, the final tree T kβ (C ′) can be regarded as a number of com-
pressed tries joined by edges labeled ∗. Each compressed trie T (S) stores at most |C ′|
selected suffixes of the strings in C ′, since S is a subset of suffd(C

′) for some d. We will
use this observation in the following sections.

Since a leaf ` in a compressed trie T (S) is obtained as the suffix of a string x ∈ C ′, we
assume that ` inherits the label of x in case the strings in C ′ are labeled. For example,
when C ′ denotes the suffixes of t, we will label each suffix in C ′ with its start position in
t. This immediately provides us with an k-unbounded wildcard index. Figure 5.3 shows
some concrete examples of the construction of T kβ (C ′) when C ′ is a set of labeled suffixes.

36 A TIME-SPACE TRADE-OFF FOR K-BOUNDED WILDCARD INDEXES

2

n
a
s
$

4

s
$

2

a
s
$

4

$

2

s
$

∗

∗

na

6

s
$

2

n
a
s
$

4

s
$

2

a
s
$

4
$

∗
a

6

$

2

n
a
s
$

4

s
$

∗

∗

a

1

bananas$

3

n
a
s
$

5

s
$

3

a
s
$

5

$

3
s
$

∗

∗

na

7

s
$

1

n
a
s
$

3

s
$

1

a
s
$

3

$
∗

n
a

5

s
$

1

n
a
s
$

3

s
$

a

5

$

∗

a

2

n
a
s
$

4

s
$

2

a
s
$

4

$

∗
na

6

s
$

7

$

2

n
a
s
$

4

s
$

a

1

n
a
s
$

3

s
$

n
a

5

s
$

6

$

∗

∗

(a) T 2
1 (C).

2

n
a
s
$

4

s
$

4

$
∗

n
a

6

s
$

6

$
∗

a

1

bananas$

3

n
a
s
$

5

s
$

5

$
∗

n
a

7

s$

1

n
a
s
$

3

s
$

3

$
∗

n
a

5

s
$

5

$
∗

a

7

$

∗

(b) T 2
2 (C).

2

n
a
s
$

4

s
$

n
a

6

s
$

a

1

bananas$

3

n
a
s
$

5

s
$

n
a

7

s$

1

a
n
a
n
a
s
$

7

$

∗

(c) T 2
3 (C).

Figure 5.3: Illustrating the recursive construction of T kβ (C) for β ∈ {1, 2, 3}, k = 2 and C = suff(bananas$).
The recursion levels 0, 1, 2 in the construction are colored black, blue, red respectively. All
edges in T 2

1 (C) are light, since the construction is based on a heavy α-tree decomposition with
α = β − 1 = 0. The leafs are labeled with the start position of their corresponding suffix in t.

37

5.3 Wildcard Tree Index

Given a set C ′ of substrings of t and a pattern p, we can identify the strings of C ′ having a
prefix matching p by constructing T kβ (C ′). Searching T kβ (C ′) is similar to the suffix tree
search, except when consuming a wildcard character of p in an explicit vertex v ∈ T kβ (C ′)
with more than β children. In that case the search branches to the root of the wildcard
tree joined to v and to the first location on the β − 1 heavy edges of v, effectively letting
the wildcard match the first character on all edges from v.

More precisely, the search for p is carried out as described in Algorithm 2.

Algorithm 2 Searching a wildcard tree for a pattern p = p0 ∗ p1 ∗ . . . ∗ pj .
A ← {root(T kβ (C ′))}
R ← ∅
while A 6= ∅ do
`← extract(A)
if |`| = |p| then
R ← R∪ {`}

else
if p[|`|+ 1] = ∗ then
A ← A∪ nextheavylocations(`)
A ← A∪ {nextlocation(`, p[|`|+ 1])}

Report descendant leaves of locations in R

The algorithm maintains a set A of active locations, which initially only contains the root
of T kβ (C ′). A location ` is repeatedly extracted from A, and the search continues from
` by adding a (possibly empty) set of new locations to A. When matching a character
c of p in a location `, the location reached by following the character c from `, denoted
nextlocation(`, c), is added to A. Additionally, when matching a wildcard, the set of all
heavy child locations of `, denoted nextheavylocations(`), is added to A. The algorithm
terminates with a set of locations R, each corresponding to at least one occurrence of p.
The strings in C ′ having p as a prefix are found by reporting the leaves below the locations
in R in time O(occ).

5.3.1 Time and Space Analysis

For each of the j wildcards in p, the size of A is increased by a factor of at most β. Hence
the search for p branches to a total of at most

∑j
i=0 β

i = O(βj) locations, each of which
requires O(m) time, resulting in query time O(βjm + occ). For β = 1 the query time
becomes O(m+ j + occ), since nextheavylocations(`) = ∅ for all `.

We will now show the space required to store T kβ (C ′), resulting in Lemma 13.

Lemma 13 For any integer 1 ≤ β < σ, the wildcard tree T kβ (C ′) has query time
O(βjm+ occ) for 1 < β < σ and O(m+ j + occ) for β = 1. The wildcard tree stores

38 A TIME-SPACE TRADE-OFF FOR K-BOUNDED WILDCARD INDEXES

O(|C ′|hk) strings, where h is an upper bound on the light height of all compressed
tries T (S) satisfying S ⊆ suffd(C

′) for some integer d.

In the paper by Cole et al. [13] the authors give a proof by induction of the space needed
to store a wildcard tree for β = 2. See Appendix B for an explanation of their proof and a
discussion of a potential problem in it. We give a more general proof of the space usage
that works for any value of β.

Proof We prove that the total number of strings (leaves) in T iβ(S), denoted |T iβ(S)|,
is at most |S|

∑i
j=0 h

j = O(|S|hi). The proof is by induction on i. The base case
i = 0 holds, since T 0

β (S) = T (S) contains |S| = |S|
∑0

j=0 h
j strings. For the induction

step, assume that |T iβ(S)| ≤ |S|
∑i

j=0 h
j . Let Sv = suff2(lightstrings(v)) for a vertex

v ∈ T (S). From the construction we have that the number of strings in T i+1
β (S) is the

number of strings in T (S) plus the number of strings in the wildcard trees joined to
the vertices of T (S). That is,

∣∣T i+1
β (S)

∣∣ =
∣∣S∣∣+

∑
v∈T (S)

∣∣T iβ(Sv)
∣∣ ≤ ∣∣S∣∣+

∑
v∈T (S)

∣∣Sv∣∣ i∑
j=0

hj .

The string sets Sv consist of suffixes of strings in S. Consider a string x ∈ S, i.e., a
leaf in T (S). The number of times a suffix of x appears in a set Sv is equal to the light
depth of x in T (S). From the construction, S is a subset of suffd(C

′) for some d, and
hence h is an upper bound on the maximum light depth of T (S). This establishes that∑

v∈T (S)

|Sv| ≤ |S|h ,

thus showing that |T i+1
β (S)| ≤ |S|+ |S|h

∑i
j=0 h

j = |S|
∑i+1

j=0 h
j .

Constructing the wildcard tree T kβ (C), for C = suff(t), we obtain a wildcard index with
the following properties.

Lemma 14 Let t be a string of length n from an alphabet of size σ. For 2 ≤ β < σ
there is a k-bounded wildcard index for t using O

(
n logkβ n

)
space. The index can

report the occurrences of a pattern with m characters and j ≤ k wildcards in time
O
(
βjm+ occ

)
.

Proof The query time follows from Lemma 13. Since T kβ (C) is a compressed trie,
and because each edge label is a substring of t, the space needed to store T kβ (C) is
upper bounded by the number of strings it contains which by Lemma 13 is O(nhk).
Since α = β − 1, it follows from Lemma 12 that h = logβ n is an upper bound on the
light height of all compressed tries T (S) satisfying S ⊆ suffd(C) for some d, since
they contain at most n vertices. Consequently, the space needed to store the index is
O(n logkβ n).

39

5.4 Wildcard Tree Index Using the LCP Data Structure

In this section we prove Theorem 2 by showing how LCP queries can be used to speed up
the query time of the wildcard tree index described in the previous section.

The wildcard index of Lemma 14 reduces the branching factor of the suffix tree search
from σ to β, but still has the drawback that the search for a subpattern pi from an active
location ` ∈ T kβ (C) takes O(|pi|) time. This can be addressed by combining the index
with the LCP data structure as in the paper by Cole et al. [13]. In that way, the search
for a subpattern can be done in time O(log log n). The index is obtained by modifying
the construction of T iβ(S) such that each T (S) is added to the LCP data structure prior
to joining the (β, i − 1)-wildcard trees to the vertices of T (S). For all T (S) except the
final T (S) = T 0

β (S), support for unrooted LCP queries in time O(log log n) is added using
additional O(|S| log |S|) space. For the final T (S) we only need support for rooted queries
since at this point all wildcards in p have been consumed. Upon receiving the query pattern
p = p1 ∗ p2 ∗ . . . ∗ pj , each pi is preprocessed in time O(|pi|) to support LCP queries for any
suffix of pi.

The search for p in the modified index proceeds as described in Algorithm 3. The
algorithm is similar to that for the normal wildcard tree index, except now LCP queries
are used to search for p0, p1, . . . , pj . After performing a LCP query for pi from `, the search
only continues from the new location `′ if the full subpattern pi was matched. In that case,
the search branches to the heavy children and the root of the wildcard tree joined to `′,
since the next character in the search is a wildcard. If the last subpattern was matched,
the resulting location is an occurrence of p in t, and all strings in C having that location as
an ancestor are reported.

Algorithm 3 Searching a wildcard tree to find the occurrences a pattern p = p0 ∗p1 ∗ . . .∗pj
using the LCP data structure.
A ← {(0, root(T kβ (C ′)))}
R ← ∅
while A 6= ∅ do

(i, `)← extract(A)
`′ ← LCP(pi, trie(`), `)
if |`′| − |`| = |pi| then

if i = j then
R ← R∪ {`′}

else
A ← A∪ {(i+ 1, `′′) | `′′ ∈ nextheavylocations(`) ∨ `′′ = nextlocation(`′, ∗)}

Report descendant leaves of locations in R

5.4.1 Time and Space Analysis

In the search for p a total of at most
∑j

i=0 β
i = O(βj) LCP queries each taking time

O(log log n) are performed. Preprocessing p0, p1, . . . , pj takes
∑j

i=0 |pi| = m time, so the

40 A TIME-SPACE TRADE-OFF FOR K-BOUNDED WILDCARD INDEXES

query time is O(m+ βj log logn+ occ). The space needed to store the index is O(n logkβ n)

for T kβ (C) plus the space needed to store the LCP data structure. Adding support for
rooted LCP queries requires linear space in the total size of the compressed tries, which
is O(n logkβ n). Let T (S0), T (S1), . . . , T (Sq) denote the compressed tries with support for
unrooted LCP queries. Since each Si contains at most n strings and

∑q
i=0 |Si| = |T

k−1
β (C)|,

by Lemma 2, the additional space required to support unrooted LCP queries is

O

(
q∑
i=0

|Si| log |Si|

)
= O

(
log n

q∑
i=0

|Si|

)
= O

(
log n|T k−1β (C ′)|

)
= O

(
n log(n) logk−1β n

)
,

which is an upper bound on the total space required to store the wildcard index. This
concludes the proof of Theorem 2.

The k-bounded wildcard index described by Cole et al. [13] is obtained as a special
case of Theorem 2.

Corollary 3 (Cole et al.) Let t be a string of length n from an alphabet of size σ.
There is a k-bounded wildcard index for t using O(n logk n) space. The index can
report the occurrences of a pattern with m characters and j ≤ k wildcards in time
O(m+ 2j log log n+ occ).

6

A k-BOUNDED WILDCARD INDEX

WITH OPTIMAL QUERY TIME

In this chapter we show Theorem 3. In Section 6.1 we first obtain a k-bounded wildcard
index similar to Theorem 2 by using Lemma 13. We use this index to construct a black-box
reduction for obtaining optimal time indexes. In Section 6.2 the black-box reduction is
used on the wildcard index from Theorem 1 to obtain Theorem 3.

6.1 A Black-Box Reduction

Consider the k-bounded wildcard index which ensures a linear query time, obtained by
creating the wildcard tree T k1 (suff(t)) for t. We can show that the space usage for the index
depends on the height of the suffix tree for t.

Lemma 15 Let t be a string of length n from an alphabet of size σ. There is a k-
bounded wildcard index for t using O(nhk) space, where h is the height of the suffix
tree for t. The index can report the occurrences of a pattern with m characters and j
wildcards in time O(m+ j + occ).

Proof Since suff(t) is closed under the suffix operation, the height of T (suff(t)) is an
upper bound on the height of all compressed tries T (S) satisfying S ⊆ suffd(suff(t))
for some d. For β = 1, the light height of T (S) is equal to the height of T (S), so
h = height(T (suff(t))) can be used as an upper bound of the light height in Lemma 13,
and consequently the space needed to store T k1 (suff(t)) is O(nhk).

In the worst case the height of the suffix tree is close to n, but combining the index with
another wildcard index yields a useful black-box reduction. The idea is to query the first
index if the pattern is short, and the second index if the pattern is long.

Lemma 16 Let F ≥ m and let G be independent of m and j. Given a wildcard index
W with query time O(F + G + occ) and space usage O(|W|), there is a k-bounded
wildcard indexW ′ with query time O(F + j + occ) and taking space O(nmin(G, h)k +
|W|), where h is the height of the suffix tree for t.

42 A K-BOUNDED WILDCARD INDEX WITH OPTIMAL QUERY TIME

Proof The wildcard indexW ′ consists ofW and a special k-bounded wildcard index
W ′′ = T k1 (prefG(suff(t))), which is a wildcard tree with β = 1 over the set of all
substrings of t of length G. Since the maximum string depth inW ′′ is G, this value can
be used as an upper bound for the light height in Lemma 13. Consequently, the space
required to storeW ′′ is O(nmin(G, h)k) by using Lemma 15 if G > h, where h is the
height of the suffix tree for t. See Figure 6.1 for an illustration of the construction of
W ′′ = T k1 (prefG(suff(t))).

A query onW ′ results in a query on eitherW orW ′′. In case F + j > G, we query
W and the query time will be O(F +G+ occ) = O(F + j + occ). In case F + j ≤ G,
we query W ′′ with query time O(m + j + occ) = O(F + j + occ). In any case, the
query time ofW ′ is O(F + j + occ).

∗

∗
∗∗

∗

∗∗

∗

∗

k

G

Tk1 (prefG(C))

T (C)

Figure 6.1: Illustrating how the wildcard tree T k1 (prefG(C)) for C = suff(t) is obtained by slicing off the
top of the compressed trie T (C) with string depth G and appending k additional layers of
wildcard trees recursively. For reference, Figure 3.3(c) shows a concrete example of constructing
T (prefG(C)) for G = 3.

6.2 Obtaining the Index

Applying Lemma 16 with F = m and G = σk log logn on the unbounded wildcard
index from Theorem 1 yields a new k-bounded wildcard index with optimal query time
O(F + j + occ) = O(m+ j + occ). The index uses space

O(nGk + n) = O(n(σk log logn)k) = O(σk
2
n logk log n) .

This concludes the proof of Theorem 3.

7

VARIABLE LENGTH GAPS

In this chapter we consider the string indexing for patterns with variable length gaps problem.
We show that this problem can be solved, using the bounded and unbounded wildcard
indexes described in the previous chapters, by only changing the search algorithms.
Section 7.1 introduces the problem, Section 7.2 describes previous work and Section 7.3
gives an overview of our solutions. In Section 7.4 we account for the changes necessary
for supporting variable length gaps and analyse the modified search algorithm.

7.1 Introduction

The string indexing for patterns with variable length gaps problem is to build an index for
a string t that can efficiently report the occurrences of a query pattern p of the form

p = p0 ∗{a1, b1} p1 ∗{a2, b2} . . . ∗{aj , bj} pj .

The query pattern consists of j + 1 strings p0, p1, . . . , pj ∈ Σ∗ interleaved by j variable
length gaps ∗{ai, bi}, i = 1, . . . , j, where ai and bi are positive integers such that ai ≤ bi.
Intuitively, a variable length gap ∗{ai, bi} matches an arbitrary string over Σ of length
between ai and bi, both inclusive.

Example Consider the string t and pattern p over the alphabet Σ = {a, b, c, d}.

t = acbccbacccddabdaabcdccbccdaa

p = b∗{0, 4}cc∗{3, 5}d

The string t contains five occurrences of the query pattern p as shown in Figure 7.1.

As shown by the example, different occurrences of the query pattern p can start or end at
the same position in t, and the same substring in t can contain multiple occurrences of p.
Hence to completely characterize an occurrence of p in t, we need to report the positions of
the individual subpatterns p0, p1, . . . , pj for each full occurrence of the pattern. However,
in the following we will restrict our attention to reporting the start and end position of

44 VARIABLE LENGTH GAPS

1

a

2

c

3

b

4

c

5

c

6

b

7

a

8

c

9

c

10

c

11

d

12

d

13

a

14

b

15

d

16

a

17

a

18

b

19

c

20

d

21

c

22

c

23

b

24

c

25

c

26

d

27

a

28

a

b c c ∗ ∗ ∗ ∗ ∗ d

b ∗ ∗ ∗ ∗ c c ∗ ∗ ∗ ∗ ∗ d

b ∗ c c ∗ ∗ ∗ ∗ ∗ d

b ∗ ∗ c c ∗ ∗ ∗ ∗ d

b ∗ ∗ c c ∗ ∗ ∗ d

Figure 7.1: The five occurrences of p = b∗{0, 4}cc∗{3, 5}d in t = acbccbacccddabdaabcdccbccdaa.

each occurrence of p in t. For the above example, we would thus report the pairs (3, 11),
(3, 15), (6, 15) and (18, 26).

String indexing for patterns with variable length gaps has applications in information
retrieval, data mining and computational biology [18, 19, 31, 30, 33]. In particular, the
PROSITE data base [23, 7] uses patterns with variable length gaps to identify and classify
protein sequences. The problem is a generalization of string indexing for patterns with
wildcards, since a wildcard ∗ is equivalent to the variable length gap ∗{1, 1}. Variable
length gaps are also known as bounded wildcards, as a variable length gap ∗{ai, bi} can be
regarded as a bounded sequence of wildcards.

String indexing for patterns with variable length gaps is equivalent to string indexing
for patterns with wildcards, with the addition of allowing optional wildcards in the pattern.
An optional wildcard matches any character from Σ or the empty string, i.e., an optional
wildcard is equivalent to the variable length gap ∗{0, 1}. Conversely, we may also consider
a variable length gap ∗{ai, bi} as ai consecutive wildcards followed by bi − ai consecutive
optional wildcards.

In the following we let A =
∑j

i=1 ai and B =
∑j

i=1 bi denote the sum of the lower
and upper bounds on the variable length gaps in p, respectively. Hence A and B − A
denote the number of normal and optional wildcards in p, respectively. A wildcard index
with support for optional wildcards is called an optional wildcard index. As for wildcard
indexes, we distinguish between bounded and unbounded optional wildcard indexes.
A (k, o)-bounded optional wildcard index supports patterns containing A ≤ k normal
wildcards and B − A ≤ o optional wildcards. An unbounded optional wildcard index
supports patterns with no restriction on the number of normal and optional wildcards..

7.2 Previous Work

Lam et al. [26] introduced optional wildcards in the pattern and presented a variant of
their solution for the string indexing for patterns with wildcards problem. The idea is to
determine potential matches and verify complete matches using interval stabbing on the
possible positions for the subpatterns. This leads to an unbounded optional wildcard index
with query time O(m+Bjmin0≤i≤j occ(pi, t)) and space usage O(n). As before occ(pi, t)
is Θ(n) in the worst case, so the query time is Θ(Bjn) in the worst case.

45

Besides the result by Lam et al., we have no knowledge of solutions for the string
indexing for patterns with variable length gaps problem. Some results are known for
the string matching with variable length gaps problem, where the text string may not be
preprocessed in advance. Bille et al. [6] recently presented the best known solution for
the matching problem with query time O((n+m) log j + occ) using space O(m+A). We
refer to their paper for a review of the previous work on the string matching with variable
length gaps problem.

7.3 Our Results

By modifying the search algorithm, we show that our solutions to string indexing for
patterns with wildcards also support variable length gaps in the pattern, leading to the
following new theorems.

Theorem 4 Let t be a string of length n from an alphabet of size σ. There is an
unbounded optional wildcard index for t using O(n) space. The index can report the
occurrences of a pattern with m characters, A wildcards and B−A optional wildcards
in time O(m+ 2B−AσB log log n+ occ), where A =

∑j
i=1 ai and B =

∑j
i=1 bi.

Theorem 5 Let t be a string of length n from an alphabet of size σ. For 2 ≤ β < σ,
there is a (k, o)-bounded optional wildcard index for t using O

(
n log(n) logk+o−1β n

)
space. The index can report the occurrences of a pattern with m characters, A ≤ k
wildcards and B −A ≤ o optional wildcards in time O

(
m+ 2B−AβB log log n+ occ

)
,

where A =
∑j

i=1 ai and B =
∑j

i=1 bi.

Theorem 6 Let t be a string of length n from an alphabet of size σ. There is a
(k, o)-bounded optional wildcard index for t using O(σ(k+o)

2
n logk+o log n) space. The

index can report the occurrences of a pattern with m characters, A ≤ k wildcards and
B − A ≤ o optional wildcards in time O(2B−A(m + B) + occ), where A =

∑j
i=1 ai

and B =
∑j

i=1 bi.

These results completely generalize our previous solutions, since if the query pattern only
contains variable length gaps of the form ∗{1, 1}, the problem reduces to string indexing
for patterns with wildcards. In that case A = B = j and we obtain exactly Theorem 1,
Theorem 2 and Theorem 3.

Compared to the only known index for the problem by Lam et al. [26], Theorem 4
gives an index that matches the O(n) space usage, but improves the worst-case query time
from Θ(Bjn) to O

(
m+ 2B−AσB log logn+ occ

)
, provided that B ≤ logσ

√
nj.

7.4 Supporting Variable Length Gaps

As remarked a variable length gap ∗{ai, bi} is equivalent to ai wildcards followed by bi−ai
optional wildcards. Hence to support variable length gaps, we only have to describe how
the search algorithms must be modified to match an optional wildcard in p. Essentially the

46 VARIABLE LENGTH GAPS

difference between matching a normal wildcard and an optional one is how the search
handles the location where the wildcard is matched. For a normal wildcard the location
is removed from the set of active locations, but for an optional wildcard the location is
kept active. A sequence of j optional wildcards is simulated as a sequence of j wildcards,
where all intermediate locations reached are kept active.

As an example, consider the unbounded wildcard index obtained by adding support
for unrooted LCP queries on the suffix tree T (suff(t)) for the indexed string t. Algorithm 4
illustrates how to search T (suff(t)) for a pattern p containing variable length gaps. The
algorithm is similar to Algorithm 3, except when a variable length gap ∗{ai+1, bi+1} is
matched in a location `′. In this case, the for-loop in the algorithm simulates the variable
length gap as ai+1 normal wildcards followed by bi+1 − ai+1 optional wildcards. At the
start of each iteration of the for-loop f wildcards have been simulated. For each wildcard
simulated, B′ holds the resulting set of locations in T (suff(t)) reached, while B contains
the active locations at the beginning of each iteration for f . When a new iteration for f
starts, B contains the active locations after f wildcards were simulated. If ai+1 ≤ f ≤ bi+1,
the currently considered location o is kept active, since the next wildcard to simulate is
optional.

Extending the algorithm to support searching in wildcard trees is just a matter of
changing the way the search branches. Instead of branching on all outgoing edges, it
must instead branch to the heavy children and follow the edge labeled ∗ for each wildcard
simulated. We refer to Algorithm 3 for how the branching should be performed.

7.4.1 Reporting Occurrences

To report the substrings in t where the query pattern occurs, we assume that each leaf ` in
T (suff(t)) has been labeled by the start position, pos(`), of the suffix in t it corresponds
to. When Algorithm 4 terminates, each location `′ ∈ R corresponds to one or more
substrings in t, where the query pattern p occurs. To report the start and end position of
these substrings, we traverse the subtree rooted at `′ and identify the leaves `0, `1, . . . , `r
corresponding to suffixes of t having `′ as a prefix. The start and end positions of these
substrings are then given by(

pos(`0), pos(`0) + |`′|
)
,
(
pos(`1),pos(`1) + |`′|

)
, . . . ,

(
pos(`r), pos(`r) + |`′|

)
.

7.4.2 Analysis of the Modified Search

To analyse the running time of Algorithm 4, we will bound the maximum number of LCP
queries performed during the search for the query pattern

p = p0 ∗{a1, b1} p1 ∗{a2, b2} . . . ∗{aj , bj} pj .

We define Ai =
∑i

l=1 ai and Bi =
∑i

l=1 bi. The number of normal and optional wildcards
preceding the subpattern pi in p is Ai and Bi −Ai, respectively. To bound the number of
locations in which a LCP query for the subpattern pi can start, we choose and promote
l = 0, 1, . . . , Bi −Ai of the preceding optional wildcards to normal wildcards and discard

47

Algorithm 4 Searching the unbounded wildcard index T (suff(t)) to find the occurrences a
pattern p = p0 ∗{a1, b1} p1 ∗{a2, b2} . . . ∗{aj , bj} pj using the LCP data structure.
A ← {(0, root(T (suff(t))))}
R ← ∅
while A 6= ∅ do

(i, `)← extract(A)
`′ ← LCP(pi, trie(`), `)
if |`′| − |`| = |pi| then

if i = j then
R ← R∪ {`′}

else
B ← {`′}
for f ← 0 to bi+1 − 1 do
B′ ← ∅
while B 6= ∅ do
o← extract(B)
if f < ai+1 then
B′ ← B′ ∪ nextlocations(o)

else
B′ ← B′ ∪ nextlocations(o) ∪ {o}

B ← B′
A ← A∪ {(i+ 1, `′′) | `′′ ∈ B}

For each location in R report the corresponding substrings in t

the rest. For a specific choice there are exactly Ai + l wildcards preceding pi, and thus the
number of locations in which a LCP query for pi can start is at most βAi+l. The term β is
an upper bound on the branching factor of the search when consuming a wildcard. For the
index T (suff(t)) searched by Algorithm 4, the branching factor is β = σ, but indexes based
on wildcard trees can have a smaller branching factor. There are

(
Bi−Ai

l

)
possibilities for

choosing the l optional wildcards, so the number of locations in which a LCP query for pi
can start is at most

Bi−Ai∑
l=0

(
Bi −Ai

l

)
βAi+l ≤ 2Bi−AiβBi . (7.1)

Summing over the j + 1 subpatterns, we obtain the following bound for the total number
of LCP queries performed during a search for the query pattern p.

j∑
i=0

2Bi−AiβBi = O
(
2B−AβB

)
.

Since the search algorithm performs LCP queries in time O(log log n) and has to preprocess
the pattern in time O(m), the total query time is O(m + 2B−AβB log logn + occ). This
concludes the proof of Theorem 4 and Theorem 5.

48 VARIABLE LENGTH GAPS

To show Theorem 6, we apply a black-box reduction very similar to Lemma 16, leading
to a (k, o)-bounded optional wildcard index, where k and o are parameters chosen in
advance. This index consists of the following two optional wildcard indexes. A query is
performed on one of these indexes depending on the length m+B of the received query
pattern p.

1. The unbounded optional wildcard index given by Theorem 4. This index has query
time O(m+ 2B−AσB log logn+ occ) and uses space O(n).

2. The (k, o)-bounded optional wildcard index obtained by constructing the wildcard
tree T k+o1 (prefG(suff(t))) without the LCP data structure, where G = σk+o log logn.
From Equation 7.1 with β = 1, the search for the subpattern pi can start from at most
2Bi−Ai locations. Searching for pi from each of these locations takes time O(|pi|+ bi),
since the LCP data structure is not used and the tree must be traversed one character
at a time. Summing over the j + 1 subpatterns, we obtain the following query time
for the index

O

(
j∑
i=0

2Bi−Ai(|pi|+ bi) + occ

)
= O

(
2B−A(m+B) + occ

)
.

The index is a wildcard tree and by the same argument as for Theorem 3, it can be
stored using space O(nGk+o).

In case the received query pattern p has length m + B > G we query the first index. It
follows that 2B−AσB log logn ≤ 2B−AG < 2B−A(m+B), so the query time is O(2B−A(m+
B) + occ). If p has length m+B ≤ G all occurrences of p in t can be found by querying
the second index in time O(2B−A(m+B) + occ). The space of the index is

O(n+ nGk+o) = O(n(σk+o log logn)k+o) = O(nσ(k+o)
2

logk+o log n) .

This concludes the proof of Theorem 6.

8

CONCLUSION

In this thesis we considered the problem of indexing a string to report the occurrences of a
query pattern containing wildcards. The ideal index has size linear in the length of the
indexed string and optimal query time, i.e., the time to report the occurrences of a pattern
is linear in the length of the query pattern and the number of occurrences.

The previous work on the problem indicate that solutions have query times which
are either exponential in the number of wildcards in the pattern, or linear in the length
of the indexed string. It has been an open problem if non-trivial solutions with optimal
query times exist. We settled this question by giving an optimal time index obtained
using a black-box reduction. However, this comes at the price of increasing the size of the
index to be exponential in the maximal number of wildcards allowed in the pattern. It is
noteworthy that the size of the optimal time index is automatically improved by using an
index with a faster query time in the black-box reduction.

It has also been unknown if it is possible to obtain linear size indexes which avoid
a query time linear in the length of the indexed string. We described a linear size
index having a query time exponential in the number of wildcards. The base of the
exponentiation is the size of the alphabet. Furthermore, we showed how to reduce the
base of the exponentiation in the query time, but doing so increased the size of the index
to be exponential in the maximal number of wildcards allowed in the pattern. This is
the result of creating dedicated subtrees to handle the wildcards. However, examples
indicate that these subtrees may be very similar, and it could be of interest to investigate if
compression techniques can be applied to reduce the size of the index.

Moreover, we showed that our indexes can solve a generalized version of the problem
where the pattern contains variable length gaps or optional wildcards. However, the price
of doing so is that the query times become exponential in the number of optional wildcards
in the pattern. It might be interesting to investigate if an optimal time index for this
problem can be obtained.

The Longest Common Prefix data structure is a key component in our solutions. We
gave a detailed explanation and new proofs of the data structure. Additionally, we showed
two new properties that allow the data structure to be used in a more general context.
We also introduced a generalization of the classic heavy path decomposition. This new

50 CONCLUSION

technique might be of independent interest for problems that can be solved efficiently on
trees with bounded out-degree.

Other future work could investigate if our techniques can be applied when wildcards
or variable length gaps are allowed in the indexed string. Another question is how the
problem and the techniques for solving it relates to approximate text indexing. For wildcard
indexes having a query time sublinear in the length of the indexed text, it remains an open
problem if there is an index where neither the size nor the query time is exponential in the
number of wildcards in the pattern.

Hjalte Wedel Vildhøj Søren Vind

BIBLIOGRAPHY

[1] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: A
survey and a new algorithm for a distributed environment. Theory Comput. Systems,
37(3):441–456, 2004.

[2] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc. 39th FOCS,
pages 534–543, 1998.

[3] A. Amir, G. Landau, M. Lewenstein, and D. Sokol. Dynamic text and static pattern
matching. ACM Trans. Algorithms, 3(2), 2007.

[4] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching with k
mismatches. In Proc. 11th SODA, pages 794–803, 2000.

[5] P. Bille and I. L. Gørtz. Substring Range Reporting. In Proc. 22nd CPM, pages
299–308, 2011.

[6] P. Bille, I. L. Gørtz, H. Vildhøj, and D. Wind. String matching with variable length
gaps. In Proc. 17th SPIRE, pages 385–394, 2010.

[7] P. Bucher and A. Bairoch. A generalized profile syntax for biomolecular sequence
motifs and its function in automatic sequence interpretation. In Proc. 2nd ISMB,
pages 53–61, 1994.

[8] H. L. Chan, T. W. Lam, W. K. Sung, S. L. Tam, and S. S. Wong. A linear size index for
approximate pattern matching. J. Disc. Algorithms, 2011. To appear, announced at
CPM 2006.

[9] B. Chazelle. Filtering search: A new approach to query-answering. SIAM J. Comput.,
15(3):703–724, 1986.

[10] G. Chen, X. Wu, X. Zhu, A. Arslan, and Y. He. Efficient string matching with wildcards
and length constraints. Knowl. Inf. Sys., 10(4):399–419, 2006.

[11] P. Clifford and R. Clifford. Simple deterministic wildcard matching. Inf. Process. Lett.,
101(2):53–54, 2007.

52 BIBLIOGRAPHY

[12] L. Coelho and A. Oliveira. Dotted suffix trees a structure for approximate text
indexing. In Proc. 13th SPIRE, pages 329–336, 2006.

[13] R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with
errors and don’t cares. In Proc. 36th STOC, pages 91–100, 2004.

[14] R. Cole and R. Hariharan. Approximate string matching: A simpler faster algorithm.
In Proc. 9th SODA, pages 463–472, 1998.

[15] R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard
matching. In Proc. 34rd STOC, pages 592–601, 2002.

[16] M. J. Fischer and M. S. Paterson. String-Matching and Other Products. In Complexity
of Computation, SIAM-AMS Proceedings, pages 113–125, 1974.

[17] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a Sparse Table with O(1) Worst
Case Access Time. J. ACM, 31:538–544, 1984.

[18] K. Fredriksson and S. Grabowski. Efficient algorithms for pattern matching with
general gaps, character classes, and transposition invariance. Inf. Retr., 11(4):335–
357, 2008.

[19] K. Fredriksson and S. Grabowski. Nested counters in bit-parallel string matching.
Proc. 3rd LATA, pages 338–349, 2009.

[20] Z. Galil and R. Giancarlo. Improved string matching with k mismatches. ACM SIGACT
News, 17(4):52–54, 1986.

[21] D. Gusfield. Algorithms on strings, trees, and sequences: computer science and compu-
tational biology. Cambridge University Press, 1997.

[22] D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
J. Comput., 13(2):338–355, 1984.

[23] K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch. The PROSITE database, its status
in 1999. Nucleic Acids Res., 27(1):215–219, 1999.

[24] C. S. Iliopoulos and M. S. Rahman. Pattern matching algorithms with don’t cares. In
Proc. 33rd SOFSEM, pages 116–126, 2007.

[25] A. Kalai. Efficient pattern-matching with don’t cares. In Proc. 13th SODA, pages
655–656, 2002.

[26] T. W. Lam, W. K. Sung, S. L. Tam, and S. M. Yiu. Space efficient indexes for string
matching with don’t cares. In Proc. 18th ISAAC, pages 846–857, 2007.

[27] G. Landau and U. Vishkin. Efficient string matching with k mismatches. Theoret.
Comput. Sci., 43:239–249, 1986.

53

[28] G. Landau and U. Vishkin. Fast parallel and serial approximate string matching. J.
Algorithms, 10(2):157–169, 1989.

[29] M. Maas and J. Nowak. Text indexing with errors. J. Disc. Algorithms, 5(4):662–681,
2007.

[30] G. Mehldau and G. Myers. A system for pattern matching applications on biose-
quences. CABIOS, 9(3):299–314, 1993.

[31] E. Myers. Approximate matching of network expressions with spacers. J. Comput.
Bio., 3(1):33–51, 1996.

[32] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for approxi-
mate string matching. IEEE Data Eng. Bull., 24(4):19–27, 2001.

[33] G. Navarro and M. Raffinot. Fast and simple character classes and bounded gaps
pattern matching, with applications to protein searching. J. Comput. Bio., 10(6):903–
923, 2003.

[34] S. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of patterns
using a labeling paradigm. In Proc. 37th FOCS, pages 320–328, 1996.

[35] A. Tam, E. Wu, T. Lam, and S. Yiu. Succinct text indexing with wildcards. In Proc.
16th SPIRE, pages 39–50, 2009.

[36] D. Tsur. Fast index for approximate string matching. J. Disc. Algorithms, 8(4):339–
345, 2010.

[37] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[38] P. Weiner. Linear pattern matching algorithms. In Proc. 14th SWAT, pages 1–11,
1973.

[39] D. E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n).
Inf. Process. Lett., 17(2):81 – 84, 1983.

Appendices

55

A

SUMMARY OF NOTATION AND DEFINITIONS

Strings and Sets
Σ The alphabet.
σ The size of the alphabet, i.e., σ = |Σ|.
c A character in the alphabet Σ.
t The text string to build a wildcard index for. The characters in t are

numbered from 1 to |t|.
n The length of t, i.e., n = |t|.

x, y, z Strings of lengths |x|, |y| and |z|, respectively.
x[a, b] The substring of x from index a to b, both inclusive.

prefi(x) The prefix x[1, i] of x of length i.
suffi(x) The suffix x[i, |x|] of x of length n− i+ 1.
pref(x) The set of all non-empty prefixes of x.
suff(x) The set of all non-empty suffixes of x.

maxpref(x, y) The string z of maximum length where z is a prefix of both x and y.
S A set of strings, i.e., S ⊂ Σ∗.
C The set of suffixes of t, i.e., C = suff(t).

C ′, C1, . . . , Cq Sets of substrings of t.
prefi(S) The set obtained by taking the prefix prefi(x) for each string x ∈ S.
suffi(S) The set obtained by taking the suffix suffi(x) for each string x ∈ S.
pref(S) The union over the set of all non-empty prefixes for all strings in S.
suff(S) The union over the set of all non-empty suffixes for all strings in S.

maxpref(S, x) The longest string z such that z = maxpref(x, y) for any string y ∈ S.

Patterns
p A query pattern.

p1, . . . , pj Subpatterns of p consisting of consecutive characters.
k Maximum number of ∗ characters allowed in p in a bounded wildcard

index.
j The number of wildcards in p.

58 SUMMARY OF NOTATION AND DEFINITIONS

m The number of characters in p.
occ The number of occurrences of p in t

occ(pi, t) The number of occurrences of subpattern pi in t.

Trees and Tries
T A rooted tree.
` A location in a compressed trie (an explicit vertex or a position on an

edge). Also used to denote the string starting in the root and ending
in `.

u, v Explicit vertices in a tree.
e An edge in a tree.

T (S) A compressed trie over the string set S.
T`(S) The subtrie of T (S) rooted in `.

T (C), T (suff(t)) The suffix tree for t.
root(T) The root vertex of T .

height(T) The maximum number of edges on a path from root(T) to a leaf.
weight(v) The number of leaves in the subtree of T rooted in v.
weight(e) The length of the label on edge e ∈ T (S).
depth(`) The sum of edge weights on the path from root(T (S)) to ` ∈ T (S),

i.e., the length of the string `)

The LCP Data Structure
H A heavy path decomposition for a tree T .
H A heavy path in a heavy path decomposition H for a tree T .

root(H) The root of a heavy path.
leaf(H) The leaf of a heavy path.
pos(x) The start position of a suffix x of t.

order(x) The position of x in the lexicographic ordering of all substrings of t.
orderset(Ci) The set of order(x) for all strings x ∈ Ci.

hS(x) The maximum distance that x follows a string in S, i.e., hS(x) =
|maxpref(S, x)|.

lpsS(x) A string y ∈ C having |maxpref(x, y)| = hS(x) and being lexicograph-
ically closest to x among all strings in S.

leftleaf(v) The left leaf in the subtree of T rooted at v ∈ T .
rightleaf(v) The right leaf in the subtree of T rooted at v ∈ T .

Variable Length Gaps
∗{ai, bi} A variable length gap, corresponding to ai wildcards followed by bi−ai

optional wildcards.
Ai The sum of the lower bounds in the variable length gaps in the pattern

preceding subpattern pi.
Bi The sum of the upper bounds in the variable length gaps in the pattern

preceding subpattern pi.

59

A The sum of the lower bounds ai for all j variable length gaps in the
pattern (the minimum number of wildcards in p), i.e., A = Aj .

B The sum of the upper bounds bi for all j variable length gaps in the
pattern (the maximum number of wildcards), i.e., B = Bj .

o The maximum number of optional wildcards allowed in the pattern
for a bounded optional wildcard index.

Construction Parameters
α Maximum out-degree of a heavy tree in a heavy α-tree decomposition.
β Maximum branching factor for a search in a wildcard tree.
χ The maximum number of leaves in a bottom tree.

Integers
h The distance a string follows another string. Also used to denote the

height of a tree.
i, j, r Indices.

Queries
NCA(u, v) The nearest common ancestor of the two vertices u, v ∈ T .
WA(v, i) The ancestor location ` of v having depth(`) = i.

PREDU (i) The predecessor for i in the set U .
SUCCU (i) The successor for i in the set U .

LCP(x, i, `) The location reached from ` ∈ T (Ci) by matching the string x.

Algorithms
extract(A) Remove and return a single element from the set A.

trie(`) The index i of the compressed trie T (Ci) containing `.
bottoms(`) The roots of the bottom tries B1, . . . , Bq joined to location `.

hasbottom(`, c) True if ` has a bottom trie reachable by an edge labeled c.
bottom(`, c) The root of the bottom trie reachable from ` by an edge labeled

c.
nextlocation(`, c) The location `′ reachable from ` by an edge labeled c where

|`′| = |`|+ 1.
nextlocations(`) The set of child locations `′ of ` where |`′| = |`|+ 1.

nextheavylocations(`) The set of child locations `′ of ` where |`′| = |`|+ 1 reachable
on a heavy path from `.

B

THE PROOF OF LEMMA 4 BY COLE ET AL.

Lemma 4 in the paper by Cole et al. [13] states that the size of the structure supporting k
wildcards in the pattern is O(n + x (k+log x)k

k!), where the term n comes from storing the
suffix tree. Using the terminology from this thesis, the lemma states that the size of the
wildcard tree T kβ (C) for β = 2 is O

(
|C| (k+log |C|)k

k!

)
. Cole et al. sketch a proof by induction

in their paper. In the following we fill in the details of the proof, and highlight a potential
problem.

The Proof

The proof can be divided into the following two claims.

Claim 1: Let Sk(x) denote the space taken by the structure for k wildcards on a collection
of x strings, then

Sk(x) ≤ x+ x
Sk−1(

x
2)

x
2

+ x
Sk−1(

x
4)

x
4

+ · · ·+ x
Sk−1(1)

1
for k ≥ 1

and S0(x) = x.

Claim 2: If Claim 1 is true then by induction, one can show that

Sk(x) ≤ x+ x
log x

1!
+ x

log x(log x+ 1)

2!
+ · · ·+ x

log x(log x+ 1) · · · (log x+ k − 1)

k!

= O

(
x

log x(1 + log x) · · · (log x+ k − 1)

k!

)
= O

(
x

(k + log x)k

k!

)
We investigate each of the claims separately.

62 THE PROOF OF LEMMA 4 BY COLE ET AL.

Claim 1

In their paper Cole et al. prove this claim as follows. Consider a compressed trie T (C)
over the string set C containing |C| = x strings. Let H be the heavy path starting from the
root of T (C). The wildcard trees hanging from the vertices on H each contain at most x/2
strings, so one of these trees has size at most Sk−1(x/2). Hence the cost per string stored
in a wildcard tree hanging from H is at most Sk−1(x/2)

x/2 , assuming that Sk(x)/x is non-
decreasing function of x. At most x strings are stored in the wildcard trees hanging from
H, since they constitute a partition of the strings in C. Consequently, the combined size of
the wildcard trees hanging from H is at most xSk−1(x/2)

x/2 . Now consider the heavy paths
hanging off H. Each wildcard tree joined to a vertex on one of these paths contains at most
x/4 strings, and in total at most x strings are stored in the wildcard trees hanging from
these paths. Therefore, the size of these wildcard trees is at most xSk−1(x/4)

x/4 . Repeating
the argument for each of the log x layers of heavy paths leads to the bound in Claim 1,
where the initial term x is the strings stored in T (C).

Claim 2

Cole et al. do not prove this claim in their paper, but remark that it is easy to verify by
induction. We give the proof here. For the base case k = 0, the claim is that S0(x) ≤ x,
which is true since S0(x) = x. For the inductive step, we assume that Claim 2 holds for
k = j, and show that it also holds for k = j + 1. From Claim 1 we have that

Sj+1(x) ≤ x +

log x terms︷ ︸︸ ︷
x
Sj(

x
2)

x
2

+ x
Sj(

x
4)

x
4

+ · · · + x
Sj(1)

1

Using the induction hypothesis on the log x terms involving Sj(·) yields

Sj+1(x) ≤ x +

(term 1) x

(
1 +

log(x
2
)

1!
+

log(x
2
)(log(x

2
) + 1)

2!
+ · · ·+

log(x
2
)(log(x

2
) + 1) · · · (log(x

2
) + j − 1)

j!

)
+

(term 2) x

(
1 +

log(x
4
)

1!
+

log(x
4
)(log(x

4
) + 1)

2!
+ · · ·+

log(x
4
)(log(x

4
) + 1) · · · (log(x

4
) + j − 1)

j!

)
+

...

(term log(x)− 1) x

(
1 +

log(2)

1!
+

log(2)(log(2) + 1)

2!
+ · · ·+

log(2)(log(2) + 1) · · · (log(2) + j − 1)

j!

)
+

(term log x) x

(
1 +

log(1)

1!
+

log(1)(log(1) + 1)

2!
+ · · ·+

log(1)(log(1) + 1) · · · (log(1) + j − 1)

j!

)

63

Adding the log x terms in each of the j + 1 columns yields

Column 1:
log x∑
i=1

1 = log x =
log x

1!

Column 2:
log x∑
i=1

log(x)− i
1!

=

log(x)−1∑
i=1

i

1!

?
=

(log(x)− 1) log x

2!
≤

log x(log x+ 1)

2!

...

Column j + 1:
log x∑
i=1

(log(x)− i)(log(x)− i+ 1) · · · (log(x)− i+ j − 1)

j!
=

log(x)−1∑
i=1

i(i+ 1) · · · (i+ j − 1)

j!

?
=

(log(x)− 1) log(x)(log(x) + 1) · · · (log(x) + j − 1)

(j + 1)!

≤
log(x)(log(x) + 1)(log(x) + 2) · · · (log(x) + j)

(j + 1)!

where ? follows from the fact that

∑̀
i=1

i(i+ 1) · · · (i+ j − 1)

j!
=
`(`+ 1) · · · (`+ j)

(j + 1)!
.

Adding the upper bounds for the j + 1 columns, we have that

Sj+1 ≤ x+ x

(
log x

1!
+

log x(log x+ 1)

2!
+ · · ·+ log x(log x+ 1) · · · (log x+ j)

(j + 1)!

)
,

and that concludes the inductive step.

A Potential Problem

There is a problem in the proof of Claim 1. Recall that a wildcard tree joined to a vertex v
on a heavy path H consists of the merge of the off-path substrees (i.e., the subtrees reached
by following a light edge from v), where the first character has been replaced by ∗. A
single off-path subtree hanging from a vertex v on the first heavy path H contains at most
x/2 strings. However, it is not true that the wildcard tree hanging from v contains at most
x/2 strings. In the worst case the wildcard tree could be the merge of σ − 1 subtrees each
containing at most x/2 strings, only excluding the heaviest subtree. Thus, the wildcard
tree hanging from v could store (1− 1/σ)x strings.

	Contents
	Introduction
	Previous Work
	Our Results

	Preliminaries
	Strings and Basic Definitions
	Trees and Tries
	Heavy Path Decomposition

	Overview of Data Structures
	Predecessor
	Nearest Common Ancestor
	Weighted Ancestor

	The LCP Data Structure
	Introduction
	Unrooted LCP Queries

	The Longest Prefix String
	Building the LCP Data Structure
	Preprocessing a Query String
	Preprocessing All Suffixes of a Query String

	Rooted LCP Queries
	Example of a Rooted LCP Query

	Unrooted LCP Queries
	Prerequisites
	The Solution by Cole et al.
	A New Solution

	An Unbounded Wildcard Index Using Linear Space
	ART Decomposition
	Obtaining the Index

	A Time-Space Trade-Off for k-Bounded Wildcard Indexes
	Heavy -Tree Decomposition
	Wildcard Trees
	Wildcard Tree Index
	Time and Space Analysis

	Wildcard Tree Index Using the LCP Data Structure
	Time and Space Analysis

	A k-Bounded Wildcard Index with Optimal Query Time
	A Black-Box Reduction
	Obtaining the Index

	Variable Length Gaps
	Introduction
	Previous Work
	Our Results
	Supporting Variable Length Gaps
	Reporting Occurrences
	Analysis of the Modified Search

	Conclusion
	Bibliography
	Appendices
	Summary of Notation and Definitions
	The Proof of Lemma 4 by Cole et al.

