Sparse Suffix Tree Construction in Small Space

Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj (Technical University of Denmark)
Johannes Fischer, (Karlsruhe Institute of Technology)
Tsvi Kopelowitz, (Weizmann Institute of Science)
Benjamin Sach (University of Warwick)

THE UNIVERSITY OF
WARWICK

The sparse suffix array (SSA)

The sparse suffix array (SSA)

The sparse suffix array (SSA)

The sparse suffix array (SSA)

The sparse suffix array (SSA)

The sparse suffix array (SSA)

2 | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- |

a	n	a	s

$6 \quad$| a | s |
| :---: | :---: |

Sort the suffixes
lexicographically

1 | b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3 | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- |
| n | | | | |

5 | n | a | s |
| :--- | :--- | :--- |

$7 \longdiv { s }$

The sparse suffix array (SSA)

2 | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- |

a	n	a	s

$6 \quad$| a | s |
| :---: | :---: |

Sort the suffixes
lexicographically

1 | b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3 | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- |
| n | | | | |

n	a	s

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

$7 \longdiv { s }$

The sparse suffix array (SSA)

Sort the suffixes lexicographically

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2 | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- |

4 | a | n | a | s |
| :--- | :--- | :--- | :--- |

$6 \quad$| a | s |
| :---: | :---: |

1 | b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3 | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- |

5 | n | a | s |
| :--- | :--- | :--- |

$7 \quad s$

- Can be built in $O(n)$ time and $O(n)$ extra space

The sparse suffix array (SSA)

T| b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sort the suffixes lexicographically

2 | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- |

4 | a | n | a | s |
| :--- | :--- | :--- | :--- |

$6 \quad$| a | s |
| :---: | :---: |

1 | b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3 | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- |

n	a	s

$7 \quad s$

- Can be built in $O(n)$ time and $O(n)$ extra space
- What if we only care about a few of the suffixes?

The sparse suffix array (SSA)

2 | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- |

4 | a | n | a | s |
| :--- | :--- | :--- | :--- |

$6 \quad$| a | s |
| :---: | :---: |

1 | b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

n	a	n	a	s

5 | n | a | s |
| :--- | :--- | :--- |

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$7 \quad s$

- Can be built in $O(n)$ time and $O(n)$ extra space
- What if we only care about a few of the suffixes?

The sparse suffix array (SSA)

- Can be built in $O(n)$ time and $O(n)$ extra space
- What if we only care about a few of the suffixes?

The sparse suffix array (SSA)

Suffix Array | 2 | 4 | 6 | 1 | 3 | $5 \mid$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$7 \quad s$

- Can be built in $O(n)$ time and $O(n)$ extra space
- What if we only care about a few of the suffixes?

The sparse suffix array (SSA)

- Can be built in $O(n)$ time and $O(n)$ extra space
- What if we only care about a few of the suffixes?

The sparse suffix array (SSA)

- Can be built in $O(n)$ time and $O(n)$ extra space
- What if we only care about a few of the suffixes?

The sparse suffix array (SSA)

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Sparse Suffix Array

- Can be built in $O(n)$ time and $O(n)$ extra space
- What if we only care about a few of the suffixes?

The sparse suffix array (SSA)

- Can be built in $O(n)$ time and $O(n)$ extra space
- What if we only care about a few of the suffixes?

The sparse text indexing problem has been open since the 1960s ... with first, partial results from 1996 onwards

The sparse suffix array (SSA)

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{ll}\text { Sparse Suffix Array } & \begin{array}{ll}2 \boxed{6} 5 \\ \longmapsto b-\end{array}\end{array}$

The sparse suffix array (SSA)

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Sparse Suffix Array

- $O\left(n \log ^{2} b\right)$ time (Monte-Carlo)
- $O\left(\left(n+b^{2}\right) \log ^{2} b\right)$ time with high probability (Las-Vegas)
- both in $O(b)$ extra space

The sparse suffix tree (SST)

- both in $O(b)$ space

Conversion between SSA and SST is simple and takes $O(n \log b)$ time

LCPs - a fundamental tool for string algorithms

$$
\begin{aligned}
& \longmapsto \quad n \longrightarrow \\
& T \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline a & b & c & b & a & b & a & b & c & a & b & a & b & a \\
\hline
\end{array}
\end{aligned}
$$

For any (i, j), the longest common prefix is the largest ℓ such that

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

it's the furthest you can go before hitting a mismatch

LCPs - a fundamental tool for string algorithms

$$
T \stackrel{\stackrel{\rightharpoonup}{a|b| c|b| a|b| a|b| c|a| b|a| b \mid a}}{\qquad \begin{array}{c}
\Delta_{i} \\
\Delta_{j}
\end{array}}
$$

For any (i, j), the longest common prefix is the largest ℓ such that

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

it's the furthest you can go before hitting a mismatch

LCPs - a fundamental tool for string algorithms

$$
T \stackrel{\rightharpoonup}{\stackrel{a|c| c|b| a|b| a|b| c|a| b|a| b \mid a}{ }}
$$

For any (i, j), the longest common prefix is the largest ℓ such that

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

it's the furthest you can go before hitting a mismatch

LCPs - a fundamental tool for string algorithms

$$
\begin{aligned}
& \longmapsto \quad n \longrightarrow \\
& T \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline a & b & c & b & a & b & a & b & c & a & b & a & b & a \\
\hline
\end{array} \\
& \Delta_{i} \quad \Delta_{j}
\end{aligned}
$$

For any (i, j), the longest common prefix is the largest ℓ such that

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

it's the furthest you can go before hitting a mismatch

LCPs - a fundamental tool for string algorithms

$$
\begin{aligned}
& \longmapsto \quad n \longrightarrow
\end{aligned}
$$

For any (i, j), the longest common prefix is the largest ℓ such that

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

it's the furthest you can go before hitting a mismatch

- LCP data structures are typically based on the suffix array or suffix tree.

LCPs - a fundamental tool for string algorithms

$$
\begin{aligned}
& n
\end{aligned}
$$

For any (i, j), the longest common prefix is the largest ℓ such that

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

it's the furthest you can go before hitting a mismatch

- LCP data structures are typically based on the suffix array or suffix tree.
- We do the opposite - we use batched LCP queries to construct the sparse suffix array

LCPs - a fundamental tool for string algorithms

$$
\begin{aligned}
& n
\end{aligned}
$$

For any (i, j), the longest common prefix is the largest ℓ such that

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

it's the furthest you can go before hitting a mismatch

- LCP data structures are typically based on the suffix array or suffix tree.
- We do the opposite - we use batched LCP queries to construct the sparse suffix array
- These LCP queries will be answered using Karp-Rabin fingerprints to ensure that the space remains small

Karp-Rabin fingerprints of strings

$$
\begin{aligned}
& S \quad \begin{array}{l}
a|b| a|c| c \mid \\
\hline a|a| b|c| \\
\hline
\end{array} \\
& \phi(S)=\sum_{k=0}^{|S|-1} S[k] r^{k} \bmod p
\end{aligned}
$$

Here $p=\Theta\left(n^{4}\right)$ is a prime and $1 \leq r<p$ is a random integer
with high probability, $\quad S_{1}=S_{2}$ iff $\phi\left(S_{1}\right)=\phi\left(S_{2}\right)$

Karp-Rabin fingerprints of strings

$$
\begin{aligned}
& S \quad \begin{array}{l}
a|b| a|c| c \mid \\
\hline a|a| b|c| \\
\hline
\end{array} \\
& \phi(S)=\sum_{k=0}^{|S|-1} S[k] r^{k} \bmod p
\end{aligned}
$$

Here $p=\Theta\left(n^{4}\right)$ is a prime and $1 \leq r<p$ is a random integer
with high probability, $\quad S_{1}=S_{2}$ iff $\phi\left(S_{1}\right)=\phi\left(S_{2}\right)$

Observe that $\phi(S)$ fits in an $O(\log n)$ bit word

Karp-Rabin fingerprints of strings

$$
\begin{aligned}
& S \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline a & b & a & c & c & b & a & b & c & b \\
\hline
\end{array} \\
& \phi(S)=\sum_{k=0}^{|S|-1} S[k] r^{k} \bmod p
\end{aligned}
$$

Here $p=\Theta\left(n^{4}\right)$ is a prime and $1 \leq r<p$ is a random integer
with high probability, $\quad S_{1}=S_{2}$ iff $\phi\left(S_{1}\right)=\phi\left(S_{2}\right)$

Observe that $\phi(S)$ fits in an $O(\log n)$ bit word
Given $\phi(S[0, \ell])$ and $\phi(S[0, r])$ we can compute $\phi(S[\ell+1, r])$ in $O(1)$ time

Simple, Monte-Carlo batched LCP queries

Input : a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

$$
T[i \ldots i+\ell-1]=T[j \ldots j+\ell-1]
$$

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints
- In each pass we store (at most) $4 b$ prefix fingerprints

Simple, Monte-Carlo batched LCP queries

Input: a string, T of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest ℓ s.t.

- We find the largest ℓ for each pair by binary search (in parallel) comparisons are performed using fingerprints
- In each pass we store (at most) $4 b$ prefix fingerprints this takes $O(n \log b)$ time, $O(b)$ space and is correct whp.

Building the sparse suffix array using batched LCPs
$T \longdiv { b | a | n | a | n | a | s }$

Building the sparse suffix array using batched LCPs

- We perform randomised quicksort on the b suffixes using batched LCPs for suffix comparisons

Building the sparse suffix array using batched LCPs

- We perform randomised quicksort on the b suffixes using batched LCPs for suffix comparisons
- Pick a random pivot and compare each other suffix to it
- This partitions the suffixes in $O(n \log b)$ time and $O(b)$ space

Building the sparse suffix array using batched LCPs

T| b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The LCP of two
suffixes gives us their order

1 | b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2 | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- |

4 | a | n | a | s |
| :--- | :--- | :--- | :--- |

$\left.6$$a$ s (3) \longrightarrow n a \right\rvert\,

n	a	s

$7 \longdiv { s }$

- We perform randomised quicksort on the b suffixes using batched LCPs for suffix comparisons
- Pick a random pivot and compare each other suffix to it
- This partitions the suffixes in $O(n \log b)$ time and $O(b)$ space

Building the sparse suffix array using batched LCPs

T| b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The LCP of two suffixes gives us their order

\rightarrow (3) | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- |

5
n
n
:---

$7 \longdiv { s }$

- We perform randomised quicksort on the b suffixes using batched LCPs for suffix comparisons
- Pick a random pivot and compare each other suffix to it
- This partitions the suffixes in $O(n \log b)$ time and $O(b)$ space
- Recurse on each partition (the batch still contains b LCPs)

Building the sparse suffix array using batched LCPs

T| b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The LCP of two suffixes gives us their order
$1 \longdiv { b | a | n | a | n | a | s }$

$$
3 \begin{array}{|l|l|l|l|l|}
\hline n & a & n & a & s \\
\hline
\end{array}
$$

$7 \longdiv { s }$

- We perform randomised quicksort on the b suffixes using batched LCPs for suffix comparisons
- Pick a random pivot and compare each other suffix to it
- This partitions the suffixes in $O(n \log b)$ time and $O(b)$ space
- Recurse on each partition (the batch still contains b LCPs)

Building the sparse suffix array using batched LCPs

$1 \quad b|a| n|a| n|a| s$

T| b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The LCP of two suffixes gives us their order

3 | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- |

\rightarrow (5) | n | a | s |
| :--- | :--- | :--- |

$7 \longdiv { s }$

- We perform randomised quicksort on the b suffixes using batched LCPs for suffix comparisons
- The depth of the recursion is $O(\log b)$ whp. so...

The total time is $O\left(n \log ^{2} b\right)$ and the space is $O(b)$

Building the sparse suffix array using batched LCPs

$1 \quad b|a| n|a| n|a| s$
$T \xrightarrow{b|a| n|a| n|a| s}$

2	$\boxed{a\|n\| a\|n\| a \mid s}$
\rightarrow (4) $a\|n\| a \mid s$	
6	$a \mid s$

$$
3 \begin{array}{|l|l|l|l|l|}
\hline n & a & n & a & s \\
\hline
\end{array}
$$

$7 \longdiv { s }$

- We perform randomised quicksort on the b suffixes using batched LCPs for suffix comparisons
- The depth of the recursion is $O(\log b)$ whp. so...

The total time is $O\left(n \log ^{2} b\right)$ and the space is $O(b)$

Building the sparse suffix array using batched LCPs

\author{

T| b | a | n | a | n | a | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

}

1	b	ba	n	a	a n	\square	s
2	a	a n	a	n	$\square a$	s	
\rightarrow (4)a n a s							
	a						

This algorithm is Monte-Carlo and Las-Vegas. It can be made Monte-Carlo only by aborting the quicksort early

$$
3 \quad \begin{array}{|l|l|l|l|l|}
\hline n & a & n & a & s \\
\hline
\end{array}
$$

$$
\rightarrow \text { (5) } \begin{array}{|l|l|l|}
\hline n & a & s \\
\hline
\end{array}
$$

$$
7 \longdiv { s }
$$

- We perform randomised quicksort on the b suffixes using batched LCPs for suffix comparisons
- The depth of the recursion is $O(\log b)$ whp. so...

The total time is $O\left(n \log ^{2} b\right)$ and the space is $O(b)$

The sparse suffix array (SSA)

2	a	n	a	\underline{n}	a	S	
4	a	n	a	s			
6	a	S					
1	b	a	n	a	n	a	S
3	n	a	n	a	s		
5	n	a	S				
7	s						

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Sparse Suffix Array 2/65

$\longmapsto b-1$

- $O\left(n \log ^{2} b\right)$ time (Monte-Carlo)
- $O\left(\left(n+b^{2}\right) \log ^{2} b\right)$ time with high probability (Las-Vegas)
- both in $O(b)$ space

Verifying the sparse suffix array

$$
\begin{aligned}
& T \xlongequal{\stackrel{b|a| c|c| c|c|}{b|a|} \mid} \\
& \text { Suffix Array } \begin{array}{|l|l|l|l|l|l|}
\hline 2 & 4 & 6 & 1 & 3 & 5
\end{array}
\end{aligned}
$$

How can we tell if this suffix array is correct?

Verifying the sparse suffix array

$$
T \begin{aligned}
& \qquad \begin{array}{l|l|l|l|l|l|l|l|}
\hline b & a & n & a & n & a & s \\
\longmapsto & n \\
\longmapsto
\end{array}
\end{aligned}
$$

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

How can we tell if this suffix array is correct?

Check that $2<4,4<\boxed{6}, 6<\square, 1<\sqrt{3} \ldots$

Verifying the sparse suffix array

$$
T \begin{aligned}
& \qquad \begin{array}{l|l|l|l|l|l|l|l|}
\hline b & a & n & a & n & a & s \\
\longmapsto & n \\
\longmapsto
\end{array}
\end{aligned}
$$

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

How can we tell if this suffix array is correct?

Check that $2<4,4<\boxed{6}, 6<\square, 1<\sqrt{3} \ldots$

Verifying the sparse suffix array

$$
T \begin{gathered}
\begin{array}{|l|l|l|l|l|l|l|}
\hline b & a & n & a & n|a| s \\
\longmapsto & \\
\longmapsto & \\
\longmapsto
\end{array}
\end{gathered}
$$

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

How can we tell if this suffix array is correct?

Check that $2<4,4<6,6<\square, 1<\sqrt{3} \ldots$

We could check $2<4$ using an LCP query if we verified it

Verifying the sparse suffix array

$$
T \begin{gathered}
\begin{array}{|l|l|l|l|l|l|l|}
\hline b & a & n & a & n|a| s \\
\longmapsto & \\
\longmapsto & \\
\longmapsto
\end{array}
\end{gathered}
$$

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

How can we tell if this suffix array is correct?

Check that $2<4,4<6,6<\square, 1<\sqrt{3} \ldots$

We could check $2<4$ using an LCP query if we verified it

A first example

A first example

If yellow (1) and blue (2) match then the right half of green (3) matches

A first example

If yellow (1) and blue (2) match then the right half of green (3) matches

This is a lock-stepped cycle

A first example

If yellow (1) and blue (2) match then the right half of green (3) matches

This is a lock-stepped cycle

A second example

A second example

If yellow (1), blue (2) and green (3) match then $\frac{3}{4}$ of green (3) is periodic

A second example

If yellow (1), blue (2) and green (3) match then $\frac{3}{4}$ of green (3) is periodic

This is an unlocked cycle

A second example

A second example

These tricks only work when the offsets are small

The overall idea

- We build a graph which encodes the structure of the queries

The overall idea

- We build a graph which encodes the structure of the queries \bigcirc

The overall idea

- We build a graph which encodes the structure of the queries
\bigcirc

The overall idea

- We build a graph which encodes the structure of the queries
\bigcirc

The overall idea

- We build a graph which encodes the structure of the queries
θ

The overall idea

- We build a graph which encodes the structure of the queries

The overall idea

- We build a graph which encodes the structure of the queries

The overall idea

- We build a graph which encodes the structure of the queries

The overall idea

- We build a graph which encodes the structure of the queries

The overall idea

- We build a graph which encodes the structure of the queries

- We can apply one of the two tricks to any short cycle

The overall idea

- We build a graph which encodes the structure of the queries

- We can apply one of the two tricks
to any short cycle (length at most $2 \log b+1$)

The overall idea

- We build a graph which encodes the structure of the queries

- We can apply one of the two tricks
to any short cycle (length at most $2 \log b+1$)
- This breaks the cycle (because we delete an edge)

The overall idea

- We build a graph which encodes the structure of the queries

- We can apply one of the two tricks
to any short cycle (length at most $2 \log b+1$)
- This breaks the cycle (because we delete an edge)

Fact If every node has degree at least three there is a short cycle

The overall idea

- We build a graph which encodes the structure of the queries

Fact If every node has degree at least three there is a short cycle

- Finding a short cycle in the graph takes $O(b)$ time
- This gives the additive $O\left(b^{2} \log b\right)$ term
- All other steps take $O(n \log b)$ time over all rounds (and use $O(b)$ space)

Summary

Suffix Array | 2 | 4 | 6 | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Sparse Suffix Array

2/65
$\longmapsto b-1$

- $O\left(n \log ^{2} b\right)$ time (Monte-Carlo)
- $O\left(\left(n+b^{2}\right) \log ^{2} b\right)$ time with high probability (Las-Vegas)
- both in $O(b)$ space

