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Abstract

We consider the Functional Orientation 2-Color problem, which was introduced by Valiant in
his seminal paper on holographic algorithms [SIAM J. Comput., 37(5), 2008]. For this decision
problem, Valiant gave a polynomial time holographic algorithm for planar graphs of maximum
degree 3, and showed that the problem is NP-complete for planar graphs of maximum degree
10. A recent result on defective graph coloring by Corrêa et al. [Australas. J. Combin., 43, 2009]
implies that the problem is already hard for planar graphs of maximum degree 8. Together,
these results leave open the hardness question for graphs of maximum degree between 4 and 7.

We close this gap by showing that the answer is always yes for arbitrary graphs of maxi-
mum degree 5, and that the problem is NP-complete for planar graphs of maximum degree 6.
Moreover, for graphs of maximum degree 5, we note that a linear time algorithm for finding a
solution exists.

1 Introduction

In this paper we assume G = (V,E) is an undirected multigraph without loops. The maximum
degree of G is denoted ∆. An isolated vertex is a vertex with degree zero. A functional orientation
of G is an assignment of directions to a set of edges such that every non-isolated vertex has exactly
one edge directed away from it. A single edge may be assigned two opposite directions, or it may
remain undirected. A full functional orientation is a functional orientation of G that leaves no edges
of G undirected. A k-coloring of G is a partition of V into k sets V1, V2, . . . , Vk. If the subgraphs
induced by V1, V2, . . . , Vk contain no edges, we say that the coloring is a proper k-coloring. For a
given k-coloring, an induced monochromatic component is a connected component of the subgraph
induced by Vi for some i = 1, . . . , k.

Functional orientations occur in many applications. They naturally capture deterministic tran-
sitional systems such as finite state machines and positional strategies in, e.g., stochastic games
and Markov decision processes [3, 21]. Functional orientations also prove useful in the analysis of
algorithms, for example, in a dictionary with cuckoo hashing a new element can be inserted with-
out rehashing if and only if the resulting cuckoo graph has a full functional orientation [20]. The
more general concept of c-orientations, where the edges are oriented such that every vertex has
out-degree at most c, has previously been studied in connection with dynamic representations of
sparse graphs [5].

The Functional Orientation 2-Color problem (FO-2-Color problem) is to determine if G has
a (not necessarily proper) 2-coloring of the vertices and a functional orientation, such that every
edge between two vertices of the same color is directed in at least one direction by the functional
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Figure 1: Two different 2-colorings of a graph with maximum degree 5 are shown in (a) and (b).
The coloring in (a) admits a full functional orientation, such as the one shown, on the induced
subgraphs. On the other hand, the subgraphs induced by the coloring in (b) have no full functional
orientation. The graph in (c) is not FO-2-Colorable.

orientation. Equivalently, a graph is FO-2-Colorable if and only if there is a 2-coloring of G such
that every induced monochromatic component has a full functional orientation. See Figure 1 for
an example.

The FO-2-Color problem was one of the problems considered by Valiant in his seminal paper on
holographic algorithms [23]. Valiant gave a polynomial time holographic algorithm for determining
if a planar graph with ∆ ≤ 3 is FO-2-Colorable. Essentially, the algorithm counts the number
of possible FO-2-Colorings by transforming the problem to that of counting perfect matchings.
However, each FO-2-Coloring may be counted multiple times, thus we are unable to exactly count
the number of FO-2-Colorings. Even so, the input graph is FO-2-Colorable if and only if the sum is
nonzero. Assuming that the input graph is planar, this sum can be computed in polynomial time
using the FKT algorithm [16–18,22].

Additionally, Valiant showed that the FO-2-Color problem is NP-complete for planar graphs
with ∆ ≥ 10, and as we will explain in the next section, a recent result by Corrêa et al. [11]
implies the NP-completeness for ∆ ≥ 8. This leaves open the hardness of the problem for graphs
of maximum degree between 4 and 7.

In this paper we close the hardness gap by showing that the answer to the FO-2-Color problem
is always yes for arbitrary graphs with ∆ ≤ 5 and that the problem becomes NP-complete for
planar graphs with ∆ ≥ 6. We also observe that previous results imply that for graphs with ∆ ≤ 5,
an FO-2-Coloring can be generated efficiently using a simple greedy algorithm.

1.1 Related Work

It is easy to decide if a graph has a proper 2-coloring, i.e., is bipartite, since this is the case if and
only if it has no cycles of odd length. However, the more general problem of deciding whether a
graph has a k-coloring, such that the induced subgraphs all satisfy some given property π, is often
significantly harder or intractable, even for k = 2. The FO-2-Color problem belongs to this class
of problems, where π is the property that the induced subgraphs have a full functional orientation.

This class of graph coloring problems has been studied for arbitrary properties [7, 14], as well
as specific properties, e.g., the induced subgraphs must be acyclic [9, 10] or complete [2]. A large
number of these properties involve avoiding certain induced subgraphs. This has been studied for
both finite and infinite families of forbidden graphs [6] as well as for some fixed graph [1, 8].
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Another and widely studied problem of this type, which is more closely related to the FO-2-
Color problem, is that of defective coloring [4,11–13,15]. This is the problem of coloring the vertices
with k colors such that every induced subgraph has maximum degree d. If such a coloring exists
we say that the graph is (k, d)-colorable. Cowen et al. [12] showed that deciding if a planar graph
of maximum degree 5 is (2, 1)-colorable is NP-complete.

Valiant’s proof of NP-completeness for FO-2-Color was based on the following reduction from
(2, 1)-coloring: Let G be an instance for (2, 1)-coloring. Then the graph G′, obtained from G by
duplicating every edge in G, is FO-2-Colorable if and only if G is (2, 1)-colorable. This implies that
FO-2-Color is NP-complete for planar graphs of maximum degree 10. Recently, Corrêa et al. [11]
improved the work of Cowen et al. [12] by showing that (2, 1)-coloring is NP-complete already
for planar graphs of maximum degree 4. By Valiant’s reduction this implies that FO-2-Color is
NP-complete for planar graphs of maximum degree 8.

The FO-2-Color problem is also related to the maximum cut problem, since for ∆ ≤ 5 a
maximum cut is a (2, 2)-coloring, and therefore also an FO-2-Coloring. This follows from the
fact that the induced subgraphs are either paths or cycles, which trivially have a full functional
orientation. However, unless G is planar, this does not imply an efficient algorithm for finding an
FO-2-Coloring, since finding a maximum cut is known to be NP-hard even for simple graphs of
maximum degree 3 [24].

Lovász [19] showed that any graph of maximum degree ∆ can be (k, b∆/kc)-colored, and
Cowen et al. [12] noted that for graphs on v vertices, such a coloring can be found in O(∆v)
time using a simple greedy algorithm: Initially, let all vertices have the same color. Repeatedly,
pick a vertex u having more than b∆/kc neighbours with the same color as u. If there is no such u
the coloring is a (k, b∆/kc)-coloring. Otherwise, there must exist a different color for u such that
at most b∆/kc of u’s neighbours have this color.

Lovász’s result implies that (2, 1)-coloring is not NP-complete for ∆ = 3, and hence the simple
reduction, given by Valiant, will not work to prove NP-completeness of FO-2-Color for ∆ ≥ 6.

1.2 Our Results

Our main result is to settle the hardness question of the FO-2-Color problem for graphs of maximum
degree ∆. We show the following theorem

Theorem 1. Let G be a multigraph with v vertices and maximum degree ∆.

(i) If ∆ ≤ 5 then G can be FO-2-Colored in O(v) time.

(ii) If ∆ ≥ 6 the FO-2-Color problem is NP-complete, even for planar graphs.

Theorem 1(i) follows immediately from the results of Lovász [19] and Cowen et al. [12] for k = 2.
Considering that Valiant [23] gave an involved decision algorithm for the case of planar graphs of
maximum degree 3, it is perhaps surprising that arbitrary graphs of maximum degree 5 always
have an FO-2-Coloring.

In the remaining part of the paper we prove Theorem 1(ii) by a reduction from 3-SAT. The
NP-completeness for arbitrary graphs with ∆ ≥ 6 is first established by a construction similar to
those by Cowen et al. [12] and Corrêa et al. [11]. We extend the proof to hold for planar graphs by
giving a planar crossover gadget, which we use to resolve any crossing edges.
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Figure 2: The graph GΦ generated for the 3-SAT instance Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3),
where x1, x2 and x3 are the variables and c1 and c2 are the clauses.

2 NP-completeness of FO-2-Color

In this section we establish Theorem 1(ii) by a reduction from 3-SAT in conjunctive normal form
(3-CNF). To do so, we will, given an instance Φ of 3-CNF, construct a graph GΦ, which has an
FO-2-Coloring if and only if Φ is satisfiable. An example of our construction is given in Figure 2.
To construct such a graph we require OR-gadgets for choice, VAR-gadgets for consistency and EQ-
gadgets to connect VAR-gadgets to OR-gadgets. The main challenge is to construct these gadgets
such that GΦ has maximum degree 6.

First, in Section 2.1 we will characterize full functional orientations of graphs and prove the
existence of the VAR, OR and EQ gadgets. In Section 2.2 we prove that the construction of GΦ

implies NP-completeness of FO-2-Color for arbitrary graphs of maximum degree 6. Finally, in
Section 2.3 we provide a planar crossover gadget of maximum degree 6 to eliminate edge-crossings
in GΦ, thereby proving that the FO-2-Color problem is NP-complete for planar graphs of maximum
degree 6.

2.1 Preliminaries

The following lemma will be useful.

Lemma 1. G has a full functional orientation if and only if it consists of acyclic and unicyclic
components.

Proof. It is easy to see that G has a full functional orientation if it consists of acyclic and uni-
cyclic components. Conversely, suppose that G has a full functional orientation and a component
containing two or more cycles. This component has strictly fewer vertices than edges and thus,
by the pigeonhole principle, there is a vertex with two edges directed away from it, which is a
contradiction.

Corollary 1. G is FO-2-Colorable if and only if it has a 2-coloring where every induced monochro-
matic component is acyclic or unicyclic.
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We now show how to construct the EQ, VAR and OR gadgets. Each gadget will be a planar
embedded graph G = (V,E) and its unique face of infinite area is called the external face. A subset
of the vertices on the external face V ′ ⊆ V will be called the external vertices of the gadget. The
connection degree of a gadget is the maximum degree of its external vertices. Gadgets are combined
by identifying the external vertices.

Lemma 2. The NOT-gadget of connection degree 3, shown below, ensures that x and y have
different colors in any FO-2-Coloring.

NOT

yx

Proof. This follows trivially from Corollary 1.

Lemma 3. The EQ-gadget of connection degree 2, shown below, ensures that x and y have the
same color in any FO-2-Coloring.

EQ

yx
γ

α

a bNOT

β

c dNOT

Proof. Assume there exists a coloring where x and y have different colors. Assume without loss of
generality that x is colored 0 and y is colored 1. Also assume, again without loss of generality, that
a, c and γ are colored 0 and b and d are colored 1. All four possible colorings of α and β induce a
monochromatic component with two cycles, hence violating Corollary 1. Conversely, assume that
x and y have the same color, without loss of generality assume that color to be 0. Then γ, α, a
and c may be colored 1 and β, b and d may be colored 0. This is a valid coloring.

An essential property of the EQ-gadget is that in any FO-2-Coloring of the gadget it holds that
γ has the opposite color of that of x and y. This allows us to connect arbitrary gadgets through
intermediate EQ-gadgets, since the orientation of the external vertices are never used internally in
the EQ-gadget.

Lemma 4. The NE-gadget of connection degree 2, shown below, ensures that x and y have different
colors in any FO-2-Coloring.

NE

yx EQEQ NOT

Proof. This follows trivially from Lemma 3 and 4.

Lemma 5. The planar OR-gadget of connection degree 2, shown below, ensures that in any FO-2-
Coloring the color of z is the same as the one of x or the one of y.
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Proof. Assume for the sake of a contradiction that the external vertices x and y have the same
color and z the other color. Then γ, ζ and α have the same color as x, y and z, respectively.
All four possible colorings of β and η induce a monochromatic component with two cycles, hence
violating Corollary 1. It is easy to verify that any other coloring of the external vertices, x, y and
z is consistent with an FO-2-Coloring.

Lemma 6. The VARn,m-gadget of connection degree 4, shown below, ensures that in any FO-2-
Coloring x1, x2, . . . , xn have the same color and x1, x2, . . . , xm have the opposite color.

VARn,m

xm−1

EQ

xm

xn

EQ

xn−1

NE

Proof. This follows trivially from Lemma 3 and 4.

2.2 NP-completeness for Arbitrary Graphs

Lemma 7. The FO-2-Color problem is NP-complete for graphs with ∆ ≥ 6.

Proof. We prove the NP-completeness of FO-2-Color by a reduction from 3-SAT in conjunctive
normal form (3-CNF). First note that the problem is in NP, as the validity of an FO-2-Coloring
can be verified in polynomial time.

Given an arbitrary instance Φ of 3-CNF, we will construct a graph GΦ in polynomial time, such
that Gφ is FO-2-Colorable if and only if Φ is satisfiable. To construct the graph GΦ, we use the
EQ-gadget of Lemma 3, the OR-gadget of Lemma 5 and the VARn,m-gadget of Lemma 6. The
process is as follows: For every variable X instantiate a VARn,m-gadget with n being the number
of clauses in which X occurs unnegated and m the corresponding negated occurrences. Then for
every clause two OR-gadgets are instantiated and the output of one is connected to an input of
the other, thus forming a three input OR-gadget. The remaining OR-gadget outputs are then
connected together using EQ-gadgets, while the VAR-gadgets are connected with the OR-gadgets,
using EQ-gadgets, such that the OR-gadget for clause C is connected with the unegated (negated)
side of the VARn,m-gadget for variable X if and only if X occurs unnegated (negated) in C. An
example construction may be seen in Figure 2.

Consider the case where there exists an FO-2-Coloring of the graph. In this case the final outputs
of the OR-gadgets will be identically colored. Let this color correspond to true. By Lemma 5 at
least one of the three inputs has the same color, i.e., at least one literal in every clause is true.
Also Lemma 6 ensures that the variables are assigned consistent values. Conversely, consider a
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satisfying assignment µ to Φ. From µ, it is possible to create an FO-2-Coloring in the following
fashion: For every variable gadget, assign color 0 (1) to the n side and 1 (0) to the m side of the
gadget if the variable is true (false) in µ. These are then propagated by the equality gadgets and,
as the assignment was satisfying, every OR-gadget has the color 0 on at least one input, therefore
the output may also be colored 0. This coloring is therefore valid.

Therefore each FO-2-Coloring of the graph GΦ corresponds to a satisfying assignment of Φ.
Additionally the existence of a satisfying assignment to Φ implies the existence of an FO-2-Coloring
of GΦ. Thus showing the NP-completeness of FO-2-Color for arbitrary graphs with ∆ ≥ 6.

2.3 NP-completeness for Planar Graphs

We extend the proof of Lemma 7 to planar graphs by the elimination of crossing edges using a
crossover gadget. If such a gadget, of maximum degree 6, exists, then Theorem 1(ii) follows.

Lemma 8. The XO-gadget of connection degree 4, shown below, ensures that x and x′ as well as
y and y′ have the same colors in any FO-2-Coloring.

XO

x

x′

y

y′

EQ

EQ

EQ

EQ

NE

EQ

EQ

NE

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

Proof. By careful inspection along with Lemma 3 and 4, it can be seen that there are only 4
FO-2-Colorings, all of which satisfy the lemma.

Proof of Theorem 1(ii). Given a 3-CNF instance Φ, we apply the reduction of Lemma 7. The
resulting graphGΦ then contains at most 6 |C| edges which connect OR-gadgets to VARn,m-gadgets.
Each such edge can at most cross every other such edge once, except the corresponding parallel
edge. These are the only crossings in GΦ, thus there are at most 18 |C|2 − 6 |C| crossings, each
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of which is replaced by an XO-gadget resulting in G′Φ. The graph G′Φ is planar and preserves the
solutions of GΦ by Lemma 8. Consequently, FO-2-Color is NP-complete for planar graphs with
∆ ≥ 6.
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