Time-Space Trade-Offs for Longest Common Extensions

(To appear at CPM 2012)

Philip Bille ${ }^{1}$, Inge Li Gørtz ${ }^{1}$, Benjamin Sach ${ }^{2}$, and Hjalte Wedel Vildhøj ${ }^{1}$

[^0]University of Copenhagen, April 17, 2012

The Longest Common Extension Problem
 Definition

Problem: Preprocess a string T of length n to support LCE queries:

- LCE $(i, j)=$ The length of the longest common prefix of the suffixes starting at position i and j in T.

Example

$$
T=\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{~b} & \mathrm{a} & \mathrm{n} & \mathrm{a} & \mathrm{n} & \mathrm{a} & \mathrm{~s}
\end{array}
$$

$$
\operatorname{LCE}(2,4)=?
$$

The Longest Common Extension Problem
 Definition

Problem: Preprocess a string T of length n to support LCE queries:

- LCE $(i, j)=$ The length of the longest common prefix of the suffixes starting at position i and j in T.

Example

$$
\operatorname{an} \mathrm{a} \mathrm{n} \mathrm{a} \mathrm{~s}
$$

$$
\operatorname{LCE}(2,4)=?
$$

The Longest Common Extension Problem
 Definition

Problem: Preprocess a string T of length n to support LCE queries:

- LCE $(i, j)=$ The length of the longest common prefix of the suffixes starting at position i and j in T.

Example

$$
\operatorname{LCE}(2,4)=3
$$

The Longest Common Extension Problem
 Definition

Problem: Preprocess a string T of length n to support LCE queries:

- LCE $(i, j)=$ The length of the longest common prefix of the suffixes starting at position i and j in T.

Example

$$
\operatorname{an} \mathrm{a} \mathrm{n} \mathrm{a} \mathrm{~s}
$$

$$
\operatorname{LCE}(2,5)=0
$$

The Longest Common Extension Problem

Motivation

Longest Common Extensions appear as a subproblem in many string matching problems, including

- Approximate string matching. I.e., find substrings of T such that $T[i \ldots j] \approx P$ (hamming or edit distance).
- Finding palindromes. I.e., find substrings of T such that $T[i \ldots j]=T[i \ldots j]^{R}$.
- Finding tandem repeats. I.e., find substrings of T such that $T[i \ldots j]=U U$ for some string U.

Example: Palindromes

$$
T=\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{c}
\end{array}
$$

The Longest Common Extension Problem

Motivation

Longest Common Extensions appear as a subproblem in many string matching problems, including

- Approximate string matching. I.e., find substrings of T such that $T[i \ldots j] \approx P$ (hamming or edit distance).
- Finding palindromes. I.e., find substrings of T such that $T[i \ldots j]=T[i \ldots j]^{R}$.
- Finding tandem repeats. I.e., find substrings of T such that $T[i \ldots j]=U U$ for some string U.

Example: Palindromes

The Longest Common Extension Problem

Motivation

Longest Common Extensions appear as a subproblem in many string matching problems, including

- Approximate string matching. I.e., find substrings of T such that $T[i \ldots j] \approx P$ (hamming or edit distance).
- Finding palindromes. I.e., find substrings of T such that $T[i \ldots j]=T[i \ldots j]^{R}$.
- Finding tandem repeats. I.e., find substrings of T such that $T[i \ldots j]=U U$ for some string U.

Example: Palindromes

The Longest Common Extension Problem

Motivation

Longest Common Extensions appear as a subproblem in many string matching problems, including

- Approximate string matching. I.e., find substrings of T such that $T[i \ldots j] \approx P$ (hamming or edit distance).
- Finding palindromes. I.e., find substrings of T such that $T[i \ldots j]=T[i \ldots j]^{R}$.
- Finding tandem repeats. I.e., find substrings of T such that $T[i \ldots j]=U U$ for some string U.

Example: Palindromes

All maximal palindromes in P can be reported by performing $2 n-1$ LCE queries (one for each possible center).

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=$

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=1$

Two Simple Solutions

\#1: Store nothing

$$
\operatorname{LCE}(i, j)=2
$$

Two Simple Solutions

\#1: Store nothing

$$
\operatorname{LCE}(i, j)=3
$$

Two Simple Solutions

\#1: Store nothing

$$
\operatorname{LCE}(i, j)=3
$$

Time: $\quad O(n)$
Space: $\quad O(1)$

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=3$
Time: $\quad O(n)$
Space: $\quad O(1)$
\#2: Store the suffix tree

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=3$
Time: $\quad O(n)$ Space: $\quad O(1)$
\#2: Store the suffix tree

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=3$
Time: $\quad O(n)$
Space: $\quad O(1)$
\#2: Store the suffix tree

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=3$
Time: $\quad O(n)$
Space: $\quad O(1)$
\#2: Store the suffix tree

Our Results

Store nothing

Store suffix tree

Our Results

$$
\text { Trade-off parameter } \tau, 1 \leq \tau \leq n
$$

Store nothing

Store suffix tree

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

$$
T=\begin{array}{lllllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~d} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c}
\end{array}
$$

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

$$
\mathrm{T}=\begin{array}{llllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~d} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c}
\end{array}
$$

Difference Covers

A difference cover modulo τ is a set of integers $D \subseteq\{0,1, \ldots, \tau-1\}$ such that for any distance $d \in\{0,1, \ldots, \tau-1\}, D$ contains two elements separated by distance d modulo τ.
Ex: The set $D=\{1,2,4\}$ is a difference cover modulo 5 .

d	0	1	2	3	4
i, j	1,1	2,1	1,4	4,1	1,2

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

Difference Covers

A difference cover modulo τ is a set of integers $D \subseteq\{0,1, \ldots, \tau-1\}$ such that for any distance $d \in\{0,1, \ldots, \tau-1\}, D$ contains two elements separated by distance d modulo τ.
Ex: The set $D=\{1,2,4\}$ is a difference cover modulo 5 .

d	0	1	2	3	4
i, j	1,1	2,1	1,4	4,1	1,2

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

Lemma (Colbourn and Ling ${ }^{1}$)

For any τ, a difference cover modulo τ of size at most $\sqrt{1.5 \tau}+6$ can be computed in $O(\sqrt{\tau})$ time.

[^1]
A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

Lemma (Colbourn and Ling ${ }^{1}$)

For any τ, a difference cover modulo τ of size at most $\sqrt{1.5 \tau}+6$ can be computed in $O(\sqrt{\tau})$ time.

Analysis
Time: $O(\tau)$
Space: O (\#stored suffixes) $=O\left(\frac{n}{\tau}|D|\right)=O\left(\frac{n}{\sqrt{\tau}}\right)$

[^2]
A Randomized Solution

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose $b \in \mathbb{Z}_{p}$ uniformly at random.

$$
\begin{aligned}
& \phi(S)=\sum_{k=1}^{|S|} S[k] b^{k} \bmod p . \\
& \begin{aligned}
T & \left.=\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
d & b & c & a & a & b & c & a & b & c & a & a & b & c & a & c \\
& =3 \underbrace{1}_{\phi(T[2 \ldots} 2 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 0 & 2
\end{array}\right)=120012 \bmod 31=11
\end{aligned}
\end{aligned}
$$

Crucial property: With high probability ϕ is collision-free on substrings of T, i.e., $\phi\left(S_{1}\right)=\phi\left(S_{2}\right)$ iff $S_{1}=S_{2}$.

Also important: $\phi(T[i \ldots j+1])$ can be computed from $\phi(T[i \ldots j])$ in $O(1)$ time.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.
Blocks of τ chars

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ^{\prime} th position in T.

Observation: If S is block aligned we can compute $\phi(S)$ in $O(1)$ time. Otherwise, the time needed is $O(\tau)$.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ^{\prime} th position in T.

Observation: If S is block aligned we can compute $\phi(S)$ in $O(1)$ time. Otherwise, the time needed is $O(\tau)$.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.
Blocks of τ chars

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

Analysis
Time: At most $2 \log \left(\frac{\mathrm{LCE}}{\tau}\right)$ fingerprint comparisons each taking time $O(\tau)$. Hence query time $O\left(\tau \log \left(\frac{\text { LCE }}{\tau}\right)\right)$.
Space: $O\left(\frac{n}{\tau}\right)$.

A Randomized Solution

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

Analysis

Time: At most $2 \log \left(\frac{\mathrm{LCE}}{\tau}\right)$ fingerprint comparisons each taking time $O(\tau)$. Hence query time $O\left(\tau \log \left(\frac{\text { LCE }}{\tau}\right)\right)$.
Space: $O\left(\frac{n}{\tau}\right)$.

[^0]: ${ }^{1}$ Technical University of Denmark, DTU Informatics, \{phbi, ilg, hwvi\}@imm.dtu.dk
 ${ }^{2}$ University of Warwick, Department of Computer Science, sach@dcs.warwick.ac.uk

[^1]: ${ }^{1}$ C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett. 75(1-2):9-12, 2000

[^2]: ${ }^{1}$ C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett. 75(1-2):9-12, 2000

