

Algorithmic Research: Cooperation around Oresound

Time-Space Trade-Offs for Longest Common Extensions

(To appear at CPM 2012)

Philip Bille¹, Inge Li Gørtz¹, Benjamin Sach², and Hjalte Wedel Vildhøj¹

¹Technical University of Denmark, DTU Informatics, {phbi,ilg,hwvi}@imm.dtu.dk ²University of Warwick, Department of Computer Science, sach@dcs.warwick.ac.uk

University of Copenhagen, April 17, 2012

Problem: Preprocess a string *T* of length *n* to support LCE queries:

► LCE(*i*, *j*) = The length of the longest common prefix of the suffixes starting at position *i* and *j* in *T*.

$$T = b a n a n a s LCE(2,4) = ?$$

Problem: Preprocess a string *T* of length *n* to support LCE queries:

► LCE(*i*, *j*) = The length of the longest common prefix of the suffixes starting at position *i* and *j* in *T*.

$$T = \begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ b & a & n & a & n & a & s \\ & & \uparrow & & \\ & a & n & a & s \\ & & a & n & a & s \end{array} \quad LCE(2,4) = ?$$

Problem: Preprocess a string *T* of length *n* to support LCE queries:

► LCE(*i*, *j*) = The length of the longest common prefix of the suffixes starting at position *i* and *j* in *T*.

$$T = \begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ b & a & n & a & n & a & s \\ & & \uparrow & & & \\ & a & n & a & s \\ & & a & n & a & s \end{array} \quad LCE(2,4) = 3$$

Problem: Preprocess a string *T* of length *n* to support LCE queries:

► LCE(*i*, *j*) = The length of the longest common prefix of the suffixes starting at position *i* and *j* in *T*.

$$T = \begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ b & a & n & a & n & a & s \\ & & \uparrow & & & \\ & & & n & a & s \\ & & & a & n & a & s \end{array} \quad LCE(2,5) = 0$$

Motivation

Longest Common Extensions appear as a subproblem in many string matching problems, including

- Approximate string matching. I.e., find substrings of *T* such that $T[i \dots j] \approx P$ (hamming or edit distance).
- Finding palindromes. I.e., find substrings of *T* such that $T[i \dots j] = T[i \dots j]^R$.
- Finding tandem repeats. I.e., find substrings of *T* such that $T[i \dots j] = UU$ for some string *U*.

Example: Palindromes

$$T = b a b a a b a a c$$

Motivation

Longest Common Extensions appear as a subproblem in many string matching problems, including

- Approximate string matching. I.e., find substrings of *T* such that $T[i \dots j] \approx P$ (hamming or edit distance).
- Finding palindromes. I.e., find substrings of *T* such that $T[i \dots j] = T[i \dots j]^R$.
- Finding tandem repeats. I.e., find substrings of *T* such that $T[i \dots j] = UU$ for some string *U*.

Example: Palindromes

$$T = \mathbf{b} \stackrel{1}{\mathbf{a}} \stackrel{2}{\mathbf{b}} \stackrel{3}{\mathbf{a}} \stackrel{4}{\mathbf{b}} \stackrel{5}{\mathbf{a}} \stackrel{6}{\mathbf{b}} \stackrel{7}{\mathbf{a}} \stackrel{8}{\mathbf{c}} \stackrel{9}{\mathbf{a}} \stackrel{1}{\mathbf{c}} \stackrel{1}{\mathbf{c}}$$

Motivation

Longest Common Extensions appear as a subproblem in many string matching problems, including

- Approximate string matching. I.e., find substrings of *T* such that $T[i \dots j] \approx P$ (hamming or edit distance).
- Finding palindromes. I.e., find substrings of *T* such that $T[i \dots j] = T[i \dots j]^R$.
- Finding tandem repeats. I.e., find substrings of *T* such that $T[i \dots j] = UU$ for some string *U*.

Example: Palindromes

$$T = \underbrace{\begin{array}{c}1 & 2 & 3 \\ \mathbf{b} & \mathbf{a} & \mathbf{b}\end{array}}_{\text{center}}^{4 & 5 & 6 & 7 & 8 & 9} \\ \mathbf{a} & \mathbf{a} & \mathbf{b} & \mathbf{a} & \mathbf{a} & \mathbf{c}\end{array}$$

Motivation

Longest Common Extensions appear as a subproblem in many string matching problems, including

- Approximate string matching. I.e., find substrings of *T* such that $T[i \dots j] \approx P$ (hamming or edit distance).
- Finding palindromes. I.e., find substrings of *T* such that $T[i \dots j] = T[i \dots j]^R$.
- Finding tandem repeats. I.e., find substrings of *T* such that $T[i \dots j] = UU$ for some string *U*.

Example: Palindromes

All maximal palindromes in *P* can be reported by performing 2n - 1 LCE queries (one for each possible center).

#1: Store nothing

$$T = egin{array}{ccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \ b & a & n & a & n & a & s \ & & \uparrow & & \uparrow & & \ & & i & j & & \end{array}$$

#1: Store nothing

$$T = \begin{array}{ccccc} {}^1 & {}^2 & {}^3 & {}^4 & {}^5 & {}^6 & {}^7 \\ {}^b & {}^a & {}^n & {}^a & {}^n & {}^a & {}^s \\ & \uparrow & \uparrow & \\ & i & j \end{array}$$

#1: Store nothing

$$T = \begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ b & a & n & a & n & a & s \\ & \uparrow & & \uparrow & \\ & i & j & \end{array}$$

#1: Store nothing

$$T = \begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathbf{b} & \mathbf{a} & \mathbf{n} & \mathbf{a} & \mathbf{n} & \mathbf{a} & \mathbf{s} \\ & \uparrow & & \uparrow \\ i & j \end{array}$$

#1: Store nothing

$$T = \begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathbf{b} & \mathbf{a} & \mathbf{n} & \mathbf{a} & \mathbf{n} & \mathbf{a} & \mathbf{s} \\ & \uparrow & & \uparrow \\ i & j & \end{array}$$

LCE
$$(i,j) = 3$$

Time: $O(n)$
Space: $O(1)$

#1: Store nothing $T = \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ b & a & n & a & n & a & s \\ & \uparrow & & \uparrow \\ i & j & \end{array}$

LCE
$$(i,j) = 3$$

Time: $O(n)$
Space: $O(1)$

ICE(i i) = 2

Our Results

Store suffix tree

less space Faste

Our Results

Idea: Store a subset of the *n* suffixes in a compacted trie.

Difference Covers

A difference cover modulo τ is a set of integers $D \subseteq \{0, 1, ..., \tau - 1\}$ such that for any distance $d \in \{0, 1, ..., \tau - 1\}$, D contains two elements separated by distance d modulo τ .

Ex: The set $D = \{1, 2, 4\}$ is a difference cover modulo 5.

d	0	1	2	3	4
i,j	1,1	2,1	1,4	4,1	1,2

Idea: Store a subset of the *n* suffixes in a compacted trie.

Difference Covers

A difference cover modulo τ is a set of integers $D \subseteq \{0, 1, ..., \tau - 1\}$ such that for any distance $d \in \{0, 1, ..., \tau - 1\}$, D contains two elements separated by distance d modulo τ .

Ex: The set $D = \{1, 2, 4\}$ is a difference cover modulo 5.

d	0	1	2	3	4
i,j	1,1	2,1	1,4	4,1	1,2

Idea: Store a subset of the *n* suffixes in a compacted trie.

Lemma (Colbourn and Ling¹)

For any τ , a difference cover modulo τ of size at most $\sqrt{1.5\tau} + 6$ can be computed in $O(\sqrt{\tau})$ time.

¹C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett. 75(1-2):9–12, 2000

Idea: Store a subset of the *n* suffixes in a compacted trie.

Lemma (Colbourn and Ling¹)

For any τ , a difference cover modulo τ of size at most $\sqrt{1.5\tau} + 6$ can be computed in $O(\sqrt{\tau})$ time.

Analysis Time: $O(\tau)$ Space: O(#stored suffixes $) = O\left(\frac{n}{\tau}|D|\right) = O\left(\frac{n}{\sqrt{\tau}}\right)$

¹C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett. 75(1-2):9–12, 2000

Rabin-Karp Fingerprints

Let p be a sufficiently large prime and choose $b \in \mathbb{Z}_p$ uniformly at random.

Crucial property: With high probability ϕ is collision-free on substrings of *T*, i.e., $\phi(S_1) = \phi(S_2)$ iff $S_1 = S_2$.

Also important: $\phi(T[i \dots j + 1])$ can be computed from $\phi(T[i \dots j])$ in O(1) time.

How to answer a query

How to answer a query

Idea: Store fingerprints of suffixes starting at every τ 'th position in *T*.

Observation: If *S* is block aligned we can compute $\phi(S)$ in O(1) time. Otherwise, the time needed is $O(\tau)$.

How to answer a query

Idea: Store fingerprints of suffixes starting at every τ 'th position in *T*.

Observation: If *S* is block aligned we can compute $\phi(S)$ in O(1) time. Otherwise, the time needed is $O(\tau)$.

How to answer a query

Analysis

Time: At most $2\log(\frac{\text{LCE}}{\tau})$ fingerprint comparisons each taking time $O(\tau)$. Hence query time $O\left(\tau \log\left(\frac{\text{LCE}}{\tau}\right)\right)$.

Space: $O\left(\frac{n}{\tau}\right)$.

How to answer a query

Analysis

Time: At most $2\log(\frac{\text{LCE}}{\tau})$ fingerprint comparisons each taking time $O(\tau)$. Hence query time $O\left(\tau\log\left(\frac{\text{LCE}}{\tau}\right)\right)$.

Space: $O\left(\frac{n}{\tau}\right)$.