ALGORITHMIC RESEARCH: COOPERATION AROUND ORESOUND

Time-Space Trade-Offs for
Longest Common Extensions

(To appear at CPM 2012)

Philip Bille', Inge Li Ggrtz', Benjamin Sach?, and Hjalte Wedel Vildhgj'

!Technical University of Denmark, DTU Informatics, {phbi ,ilg,hwvi}@imm.dtu.dk
2University of Warwick, Department of Computer Science, sach@dcs.warwick.ac.uk

University of Copenhagen, April 17, 2012

o=
—
—

i

The Longest Common Extension Problem

Definition

Problem: Preprocess a string T of length n to support LCE queries:

» LCE(i,j) = The length of the longest common prefix of the suffixes
starting at position i and j in T.

Example

1 2 3 4 5 6 7
T = bananas LCE(2,4) = ?

2/47

The Longest Common Extension Problem

Definition

Problem: Preprocess a string T of length n to support LCE queries:

» LCE(i,j) = The length of the longest common prefix of the suffixes
starting at position i and j in T.

Example
1 2 3 4 5 6 7
T = bananas LCE(2,4) = ?
anas

3/47

The Longest Common Extension Problem

Definition

Problem: Preprocess a string T of length n to support LCE queries:

» LCE(i,j) = The length of the longest common prefix of the suffixes
starting at position i and j in T.

Example
1 2 3 4 5 6 7
T = bananas LCE(2,4) = 3
anas

/47

The Longest Common Extension Problem

Definition

Problem: Preprocess a string T of length n to support LCE queries:

» LCE(i,j) = The length of the longest common prefix of the suffixes
starting at position i and j in T.

Example
1 2 3 4 5 6 7
T = bananas LCE(2,5) = 0
nas

ananas

5/47

The Longest Common Extension Problem

Motivation

Longest Common Extensions appear as a subproblem in many string
matching problems, including

» Approximate string matching. ILe., find substrings of T such that
T[i...j] = P (hamming or edit distance).

» Finding palindromes. IL.e., find substrings of T such that
Thi...j]=T[i...j]R

» Finding tandem repeats. ILe., find substrings of T such that
T[i...j] = UU for some string U.

Example: Palindromes

1 2 3 4 5 6 7 8 9
T = babaabaac

5/ 47

The Longest Common Extension Problem

Motivation

Longest Common Extensions appear as a subproblem in many string
matching problems, including

» Approximate string matching. ILe., find substrings of T such that
T[i...j] = P (hamming or edit distance).

» Finding palindromes. IL.e., find substrings of T such that
Tli...j]=Tli...j]*

» Finding tandem repeats. ILe., find substrings of T such that
T[i...j] = UU for some string U.

Example: Palindromes

1 2 3 4 5 6 7 8 9

center

The Longest Common Extension Problem

Motivation

Longest Common Extensions appear as a subproblem in many string
matching problems, including

» Approximate string matching. ILe., find substrings of T such that
T[i...j] = P (hamming or edit distance).

» Finding palindromes. IL.e., find substrings of T such that
Tli...j]=Tli...j]*

» Finding tandem repeats. ILe., find substrings of T such that
T[i...j] = UU for some string U.

Example: Palindromes
1 2 3

4 5 6 7 8 9
T:Faabaac

center

The Longest Common Extension Problem

Motivation

Longest Common Extensions appear as a subproblem in many string
matching problems, including

» Approximate string matching. ILe., find substrings of T such that
T[i...j] = P (hamming or edit distance).

» Finding palindromes. IL.e., find substrings of T such that
Thi...j]=T[i...j]R

» Finding tandem repeats. ILe., find substrings of T such that
T[i...j] = UU for some string U.

Example: Palindromes
1 2 3 4 5 6 7 8 9
T = babaabaac
] T b———
center

All maximal palindromes in P can be reported by performing 2n — 1
LCE queries (one for each possible center).

9/47

Two Simple Solutions

#1: Store nothing
1

2 3 5 6 7

T = bananas LCE(i,j) =
f
i

\..HQJA

10/47

Two Simple Solutions

#1: Store nothing
1

2 3 5 6 7

T = bananas LCE(i,j) = 1
f
i

\..HQJA

11/47

Two Simple Solutions

#1: Store nothing
1

2 3 5 6 7

T = bananas LCE(i,j) = 2
f
i

\..HQJA

12/47

Two Simple Solutions

#1: Store nothing
1

2 3 5 6 7

T = bananas LCE(i,j) = 3
f
i

\..HQJA

13/47

Two Simple Solutions

#1: Store nothing
1

2 3 5 6 7

T = bananas LCE(i,j) = 3
f
i

&..HQJA

Time: O(n)
Space: 0O(1)

14/47

Two Simple Solutions

#1: Store nothing

1 2 3 4 5 6 7

T = bananas LCE(i,j) = 3
P :

i j Time: O(n)

Space: 0O(1)

5/47

Two Simple Solutions

#1: Store nothing

1 2 3 4 5 6 7

T = bananas LCE(i,j) = 3
P :

i j Time: O(n)

Space: 0O(1)

R 5 ®
NCA(2 4% XJ (! XJ
6 3 5
f<3
éb w
/ \O LCE(i,j) = INCA(i,j)| = 3

16/47

Two Simple Solutions

#1: Store nothing

1 2 3 4 5 6 7
T = bananas LCE(i,j) = 3
P :
i j Time: O(n)
Space: 0O(1)

5% g s Time: O(1)
NCA(ZA)K é o/ X) Space: O(n)

[\ LCE(i,j) = INCA(i,j)| = 3

17/47

Two Simple Solutions

#1: Store nothing

1 2 3 4 5 6 7
T = bananas LCE(i,j) = 3
Pt |
i j Time: O(n)
Space: O(1)
#2: Store the suffix tree
@%& Trade-off?
N
1 7 |
s g u Time: O(1)
NCA(ZA)K X) J x) Space: O(n)
6 3 5
I\ LCE(Lj) = INCA(i,j)| = 3

18/47

Our Results

Store nothing

Time: O (n)
Space: O(1)
)
S =
a3
Trade-off? v 9
Qo
Q
—
Time: O(1)
Space: O (n)

Store suffix tree

19/47

Our Results

’Trade-off parameter 7,1 < 7 <n

Store nothing

Time: O (n)
Space: O(1)
Randomized
Time: (T log (LCE(”))) Y
Space: O (Z) a
Trade-off? .
Time: O(1) A
Space: O (%) 3
. Deterministic
Time: O(1)
Space: O (n)

Store suffix tree

«—— Faster

20/47

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T= dbcaabcabcaabcac
[) e o [] e o

21/47

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

9 10 11 12 13 14 15 16

caabcac

5 6 7 8
abcab
T.
1

o »

1 2 3
T= dbc
!

j

22/47

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

23 /47

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

10 11 12 13 14 15 16

5 8 9

a abcaabcac
[] e o
J

o »
e o
e

1 2 3
T= dbc
T.
1

24/47

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

25/47

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

26/47

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

27/47

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

28/47

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T= dbcaabcabcaabcac

Difference Covers

A difference cover modulo 7 is a set of integers D C {0,1,...,7— 1}
such that for any distance d € {0,1,...,7 — 1}, D contains two
elements separated by distance d modulo 7.

Ex: The set D = {1, 2,4} is a difference cover modulo 5.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

8 9

abca

10 11

12
a

13 14 15 16
bcac

1 2 3 4
T= dbc a
[e e 0

]

5 6
ab
[

7
C
®

o]

o]) o |

T

Difference Covers

o

D

D

A difference cover modulo 7 is a set of integers D C {0,1,...,7— 1}
such that for any distance d € {0,1,...,7 — 1}, D contains two
elements separated by distance d modulo 7.

Ex: The set D = {1, 2,4} is a difference cover modulo 5.

2,1

1,4

4,1

1,2

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

8 9 10 11 12 13 14 15 16

7
cabcaabcac
D ® [e o o] e o o]

D D

1 2 3 4 5 6
T= dbcaab
[) [[

]

T
o

Lemma (Colbourn and Ling?)
For any 7, a difference cover modulo T of size at most \/1.57 + 6 can be
computed in O(y/7) time.

1C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett.
75(1-2):9-12, 2000

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

8 9 10 11 12 13 14 15 16

7
cabcaabcac
D ® [e o o] e o o]

D D

1 2 3 4 5 6
T= dbcaab
[) [[

]

T
o

Lemma (Colbourn and Ling?)
For any 7, a difference cover modulo T of size at most \/1.57 + 6 can be
computed in O(y/7) time.

Analysis
Time: O(r)
Space: O(#stored suffixes) = O (2|D|) =0 (L)

T

1C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett.
75(1-2):9-12, 2000

A Randomized Solution

Rabin-Karp Fingerprints

Let p be a sufficiently large prime and choose b € Z, uniformly at

random. 5
¢(S) = _S[k]p* mod p.
k=1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T= dbcaabcabcaabcac
= 3120012012001 202

~
¢(T[2...7]) = 120012 mod 31 =11

Crucial property: With high probability ¢ is collision-free on

substrings of T, i.e., ¢(S1) = ¢(S2) iff S; = S».

Also important: ¢(T[i...j+ 1]) can be computed from ¢(T[i...j]) in
O(1) time.

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

T = O A T

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

"

S
T = T T T e e e e T T T T T

I
’

} (2

l
|
1
|
1

Observation: If S is block aligned we can compute ¢(S) in O(1) time.
Otherwise, the time needed is O(r).

35/47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

"

S
T = T T T I e T T T T TTT

I
’

} (2

l
|
1
|
1

Observation: If S is block aligned we can compute ¢(S) in O(1) time.
Otherwise, the time needed is O(r).

36/47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars
i J
|
T = T A T T T T T

37/47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

—.

38/47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i j
{ !

T = TP T T T T T
v VH

H
H H

39/47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

/47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

/47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i j
{ !
T = T TP T T T T T T R T T T T
v H v H
v H v H
v v
\/l \/l

42/ 47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i j
| !
T = [T EEEEEEE T T T T T T T T T TR R [TTT T
VH VH
v H v H
v v
= v

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i j
|
T = (111 FEEEEEEEE b T TTTTT 11111 S [T TTTTT111]
VH VH
v H v H
v v
A — ‘ v E— ‘
J\ 1 J\ 1
S —

44/47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i j
|
T = (111 FEEEEEEEE b T TTTTT 11111 S [T TTTTT111]
VH vH
v H v H
v v
\/\ | (\ |
/\ 1 J\
e e

N —— —

45/47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i J
! |
T = T EEE R T T T T T T TR T T TTTTTTT]

v H v H
v H v H
v — v —
\'/l] il]
\-/! 1 \-/! 1
— e
S S

Analysis

Time: At most 21log(*E) fingerprint comparisons each taking time
O(7). Hence query time O (7 log (X£)).

Space: O (2).

46/ 47

A Randomized Solution

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i J
! |
T = T EEE R T T T T T T TR T T TTTTTTT]

i s

< log (*E) <y +— v —
\'/l] il]
\-/! 1 \-/! 1
e e
— —
v v

< XE blocks
Analysis

Time: At most 2 log(g) fingerprint comparisons each taking time

O(7). Hence query time O (7 log (X£)).
Space: O (2).

47/ 47

