
ALGORITHMIC RESEARCH: COOPERATION AROUND ORESOUND

Time-Space Trade-Offs for
Longest Common Extensions

(To appear at CPM 2012)

Philip Bille1, Inge Li Gørtz1, Benjamin Sach2, and Hjalte Wedel Vildhøj1

1Technical University of Denmark, DTU Informatics, {phbi,ilg,hwvi}@imm.dtu.dk
2University of Warwick, Department of Computer Science, sach@dcs.warwick.ac.uk

University of Copenhagen, April 17, 2012

1 / 47



The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.

Example

T = b a n a n a s LCE(2,4) = ?

a n a n a s

1 2 3 4 5 6 7

2 / 47



The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.

Example

T = b a n a n a s LCE(2,4) = ?

a n a n a s

a n a s

1 2 3 4 5 6 7

3 / 47



The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.

Example

T = b a n a n a s LCE(2,4) = 3

a n a n a s

a n a s

1 2 3 4 5 6 7

4 / 47



The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.

Example

T = b a n a n a s LCE(2,5) = 0

a n a n a s

n a s

1 2 3 4 5 6 7

5 / 47



The Longest Common Extension Problem
Motivation

Longest Common Extensions appear as a subproblem in many string
matching problems, including

I Approximate string matching. I.e., find substrings of T such that
T[i . . . j] ≈ P (hamming or edit distance).

I Finding palindromes. I.e., find substrings of T such that
T[i . . . j] = T[i . . . j]R.

I Finding tandem repeats. I.e., find substrings of T such that
T[i . . . j] = UU for some string U.

Example: Palindromes

T = b a b a a b a a c
1 2 3 4 5 6 7 8 9

6 / 47



The Longest Common Extension Problem
Motivation

Longest Common Extensions appear as a subproblem in many string
matching problems, including

I Approximate string matching. I.e., find substrings of T such that
T[i . . . j] ≈ P (hamming or edit distance).

I Finding palindromes. I.e., find substrings of T such that
T[i . . . j] = T[i . . . j]R.

I Finding tandem repeats. I.e., find substrings of T such that
T[i . . . j] = UU for some string U.

Example: Palindromes

T = b a b a a b a a c
1 2 3 4 5 6 7 8 9

center

7 / 47



The Longest Common Extension Problem
Motivation

Longest Common Extensions appear as a subproblem in many string
matching problems, including

I Approximate string matching. I.e., find substrings of T such that
T[i . . . j] ≈ P (hamming or edit distance).

I Finding palindromes. I.e., find substrings of T such that
T[i . . . j] = T[i . . . j]R.

I Finding tandem repeats. I.e., find substrings of T such that
T[i . . . j] = UU for some string U.

Example: Palindromes

T = b a b a a b a a c
1 2 3 4 5 6 7 8 9

center

8 / 47



The Longest Common Extension Problem
Motivation

Longest Common Extensions appear as a subproblem in many string
matching problems, including

I Approximate string matching. I.e., find substrings of T such that
T[i . . . j] ≈ P (hamming or edit distance).

I Finding palindromes. I.e., find substrings of T such that
T[i . . . j] = T[i . . . j]R.

I Finding tandem repeats. I.e., find substrings of T such that
T[i . . . j] = UU for some string U.

Example: Palindromes

T = b a b a a b a a c
1 2 3 4 5 6 7 8 9

center

All maximal palindromes in P can be reported by performing 2n− 1
LCE queries (one for each possible center).

9 / 47



Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) =
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

10 / 47



Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) = 1
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

11 / 47



Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) = 2
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

12 / 47



Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

13 / 47



Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

14 / 47



Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

15 / 47



Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

NCA(2, 4)

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

LCE(i, j) = |NCA(i, j)| = 3

16 / 47



Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

NCA(2, 4)

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

Time: O(1)
Space: O(n)

LCE(i, j) = |NCA(i, j)| = 3

17 / 47



Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

NCA(2, 4)

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

Time: O(1)
Space: O(n)

LCE(i, j) = |NCA(i, j)| = 3

Trade-off?

18 / 47



Our Results

Time: O (n)
Space: O (1)

Time: O (1)
Space: O (n)

Trade-off?

Le
ss

sp
ac

e

Fa
st

er

Store nothing

Store suffix tree

19 / 47



Our Results

Time: O (n)
Space: O (1)

Time: O
(
τ log

(
LCE(i,j)
τ

))
Space: O

( n
τ

)
Time: O (τ)

Space: O
(

n√
τ

)
Time: O (1)
Space: O (n)

Trade-off?

Le
ss

sp
ac

e

Fa
st

er

Randomized

Deterministic

Store nothing

Store suffix tree

Trade-off parameter τ , 1 ≤ τ ≤ n

20 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

21 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

22 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

23 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

24 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

25 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

26 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

27 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

28 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Difference Covers
A difference cover modulo τ is a set of integers D ⊆ {0,1, . . . , τ − 1}
such that for any distance d ∈ {0,1, . . . , τ − 1}, D contains two
elements separated by distance d modulo τ .
Ex: The set D = {1,2,4} is a difference cover modulo 5.

d 0 1 2 3 4
i, j 1,1 2,1 1,4 4,1 1,2

1
2

4

0
3

1

4

23

29 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D D D D

Difference Covers
A difference cover modulo τ is a set of integers D ⊆ {0,1, . . . , τ − 1}
such that for any distance d ∈ {0,1, . . . , τ − 1}, D contains two
elements separated by distance d modulo τ .
Ex: The set D = {1,2,4} is a difference cover modulo 5.

d 0 1 2 3 4
i, j 1,1 2,1 1,4 4,1 1,2

1
2

4

0
3

1

4

23

30 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D D D D

Lemma (Colbourn and Ling1)
For any τ , a difference cover modulo τ of size at most

√
1.5τ + 6 can be

computed in O(
√
τ) time.

1C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett.
75(1-2):9–12, 2000

31 / 47



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D D D D

Lemma (Colbourn and Ling1)
For any τ , a difference cover modulo τ of size at most

√
1.5τ + 6 can be

computed in O(
√
τ) time.

Analysis
Time: O(τ)

Space: O(#stored suffixes) = O
( n
τ |D|

)
= O

(
n√
τ

)

1C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett.
75(1-2):9–12, 2000

32 / 47



A Randomized Solution

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b ∈ Zp uniformly at
random.

φ(S) =
|S|∑

k=1

S[k]bk mod p .

T = d b c a a b c a b c a a b c a c

= 3 1 2 0 0 1 2 0 1 2 0 0 1 2 0 2

φ(T[2 . . . 7]) = 120012 mod 31 = 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Crucial property: With high probability φ is collision-free on
substrings of T, i.e., φ(S1) = φ(S2) iff S1 = S2.

Also important: φ(T[i . . . j + 1]) can be computed from φ(T[i . . . j]) in
O(1) time.

33 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

34 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

S

φ
′′

φ
′

i j

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Observation: If S is block aligned we can compute φ(S) in O(1) time.
Otherwise, the time needed is O(τ).

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

35 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

S

φ
′′

φ
′

i j

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Observation: If S is block aligned we can compute φ(S) in O(1) time.
Otherwise, the time needed is O(τ).

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

36 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

37 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

38 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

39 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

40 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

41 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

42 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
÷ ÷

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

43 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
÷ ÷
X X

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

44 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
÷ ÷
X X
÷ ÷

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

45 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
÷ ÷
X X
÷ ÷
X X

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

46 / 47



A Randomized Solution
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
÷ ÷
X X
÷ ÷
X X

≤ log
( LCE

τ

)

≤ LCE
τ

blocks

Analysis
Time: At most 2 log( LCE

τ ) fingerprint comparisons each taking time
O(τ). Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.

47 / 47


