=}
—
=

i

Time-Space Trade-Offs for
Longest Common Extensions

Philip Bille', Inge Li Ggrtz', Benjamin Sach?, and Hjalte Wedel Vildhgj'

!Technical University of Denmark, DTU Informatics, {phbi,ilg,hwvi}@imm.dtu.dk
2University of Warwick, Department of Computer Science, sach@dcs . warwick.ac.uk

CPM 2012, Helsinki
July 4, 2012

THE UNIVERSITY OF

WARWICK

1/56

The Longest Common Extension Problem
Definition
Problem: Preprocess a string T of length n to support LCE queries:

» LCE(i,j) = The length of the longest common prefix of the suffixes
starting at position i and j in T.
Example

1 2 3 4 5 6 7
T = banamnas LCE(2,4) = ?

The Longest Common Extension Problem
Definition
Problem: Preprocess a string T of length n to support LCE queries:

» LCE(i,j) = The length of the longest common prefix of the suffixes
starting at position i and j in T.

Example
1 2 3 4 5 6 7
T = banamnas LCE(2,4) = ?
anas

The Longest Common Extension Problem
Definition
Problem: Preprocess a string T of length n to support LCE queries:

» LCE(i,j) = The length of the longest common prefix of the suffixes
starting at position i and j in T.

Example
1 2 3 4 5 6 7
T = banamnas LCE(2,4) = 3
anas

The Longest Common Extension Problem
Definition
Problem: Preprocess a string T of length n to support LCE queries:

» LCE(i,j) = The length of the longest common prefix of the suffixes
starting at position i and j in T.

Example
1 2 3 4 5 6 7
T = bananas LCE(2,5) = 0
nas

ananas

The Longest Common Extension Problem
Definition
Problem: Preprocess a string T of length n to support LCE queries:

» LCE(i,j) = The length of the longest common prefix of the suffixes
starting at position i and j in T.

Example
1 2 3 4 5 6 7
T = banamnas LCE(2,5) = 0
nas

ananas

» We assume that the input is given in read-only memory and is not
included in the space complexity.

Two Simple Solutions

#1: Store nothing
1

2 3
T = ban

!

L

&..HQJA

5 6 7
nas

LCE(i,j) =

Two Simple Solutions

#1: Store nothing
1

2 3
T = ban

!

L

\..HQJA

5 6 7
nas

LCE(i,j) = 1

Two Simple Solutions

#1: Store nothing
1

2 3
T = ban

!

L

\..HQJA

5 6 7
nas

LCE(i,j) = 2

Two Simple Solutions

#1: Store nothing
1

2 3 5 6 7

T = bananas LCE(i,j) = 3
f
i

\..HQJA

10/56

Two Simple Solutions

#1: Store nothing
1

2 3 5 6 7

T = bananas LCE(i,j) = 3
f
i

&..HQJA

Time: O(n)
Space: 0O(1)

11/56

Two Simple Solutions

#1: Store nothing
1 2 3 4 5 6 7
T = bananas
P
i j

LCE(i,j) = 3
Time: O(n)
Space: 0O(1)

12/56

Two Simple Solutions

#1: Store nothing

1 2 3 4 5 6 7

T = bananas LCE(i,j) = 3
P :

i j Time: O(n)

Space: 0O(1)

R 5 ®
NCA(2 4% XJ (! XJ
6 3 5
f<3
éb w
/ \) LCE(i,j) = INCA(i,j)| = 3

13/56

Two Simple Solutions

#1: Store nothing

1 2 3 4 5 6 7
T = bananas LCE(i,j) = 3
P :
i j Time: O(n)
Space: 0O(1)

Fon g u Time: O(1)
NCA(2,4)K E J X) Space: O(n)

[\ LCE(i,j) = INCA(i,j)| = 3

14/56

Two Simple Solutions

#1: Store nothing

1 2 3 4 5 6 7
T = bananas LCE(i,j) = 3
Pt |
i j Time: O(n)
Space: O(1)
#2: Store the suffix tree
@%& Trade-off?
1 7 |
s g u Time: O(1)
NCA(ZA)K X) J x) Space: O(n)
6 3 5
I\ LCE(L.j) = INCA(i,j)| = 3

Our Results

Store nothing

Time: O (n)
Space: O(1)
<]
8 =
o, o}
Trade-off? 2 g
2 S
[P}
—
Time: O (1)
Space: O (n)

Store suffix tree

16/56

Our Results

Store nothing

Time: O (n)
Space: O(1)
Trade-off?
Time: O (1)
Space: O (n)

Store suffix tree

’Trade—off parameter 7,1 < 7 <n

Randomized |
Time: (7- log (LCE &))) Y
Space: O (Z) o
&
Time: O (7) A
Space: O (\%) 3
Deterministic

«——— Faster

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T= dbcaabcabcaabcac
[) e o [] e o

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

9 10 11 12 13 14 15 16

caabcac

5 6 7 8
abcab
T.
1

o »

1 2 3
T= dbc
!

j

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

10 11 12 13 14 15 16

5 8 9

a abcaabcac
[] e o
J

o »
e o
e

1 2 3
T= dbc
T.
1

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

22/56

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

24/56

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.
10 11 12 13 14 15 16

5 8 9

a abcaabcac
[]
J

o »
e o
e

1 2 3
T= dbc
T.
1

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T= dbcaabcabcaabcac

Difference Covers

A difference cover modulo 7 is a set of integers D C {0,1,...,7 — 1}
such that for any distance d € {0,1,...,7 — 1}, D contains two
elements separated by distance d modulo 7.

Ex: The set D = {1, 2,4} is a difference cover modulo 5.

26/56

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

8 9

abca

10 11

12
a

13 14 15 16
bcac

1 2 3 4
T= dbc a
[e e °

]

5 6
ab
[

7
C
®

o]

o]) o |

T

Difference Covers

T

D

D

A difference cover modulo 7 is a set of integers D C {0,1,...,7 — 1}
such that for any distance d € {0, 1, ...
elements separated by distance d modulo 7.

Ex: The set D = {1, 2,4} is a difference cover modulo 5.

,7 — 1}, D contains two

2,1

1,4

4,1

1,2

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

8 9 10 11 12 13 14 15 16

7
cabcaabcac
D ® [e o o] e o o]

D D

1 2 3 4 5 6
T= dbcaab
[) [[

]

T
T

Lemma (Colbourn and Ling?)
For any 7, a difference cover modulo 7 of size at most \/1.57 + 6 can be
computed in O(\/7) time.

Analysis
Time: O(r)
Space: O(#stored suffixes) = O (2|D|) =0 (L)

T

1C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett.
75(1-2):9-12, 2000

28/56

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b € Z, uniformly at

random.
IS|

¢(S) = S[k]p* mod p.
k=1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T= dbcaabcabcaabcac

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b € Z, uniformly at

random. 5
¢(S) = S[k]p* mod p.
k=1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T= dbcaabcabcaabcac
= 3120012012001 202

~
#(T[2...7]) = 1b* + 2b% + 0b> + 0b* + 1b° + 2b® mod p

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b € Z, uniformly at

random.
IS|

¢(S) = S[k]p* mod p.
k=1

5 6 7 8 9 10 11 12 13 14 15 16
abcabcaabcac
012012001202

—~
$(T[2...7]) = 1b' + 2b% + 0b% + Ob* + 1b5 + 2b° mod p

1 2 3
T= dbc
312

Crucial property: With high probability ¢ is collision-free on
substrings of T, i.e., ¢(S1) = ¢(Ss) iff S; = S».

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b € Z, uniformly at

random.
IS|

¢(S) = S[k]p* mod p.
k=1

5 6 7 8 9 10 11 12 13 14 15 16
abcabcaabcac
012012001202

—~
$(T[2...7]) = 1b' + 2b% + 0b% + Ob* + 1b5 + 2b° mod p

1 2
T'= db
31

Crucial property: With high probability ¢ is collision-free on
substrings of T, i.e., ¢(S1) = ¢(Ss) iff S; = S».
Also important: ¢(T[i...j+ 1]) can be computed from ¢(T[i...j]) in

O(1) time.

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

T = O T

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

S
T = T T T e e e e e T T T T T TTTTT
‘ ¢

I
’

} ¢

Otherwise, the time needed is O(7).

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

S
T = T T T T e T T T T T T
‘ ¢

I
’

} ¢

Otherwise, the time needed is O(7).

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars
i J
| |
T = T T T T T TR T T T T

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars
i J
| |
T = T T T T T TR T T T T
H H

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i j
! !
T = TP T T T T T T
VH V' H
i i

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars
i J
| |
FEE A T T T T T T A TTT T T
H
H
—
—

SN

H

H

—
—o

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i j
|
T = [AT T] e R [T 1111
vH VH
v H v H
v — v —
N — v

41/56

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i J
!
T = T HEEEEEE T T T T T T S TTTT T
v H v H
v H v H
v v
\Q\ | ‘>/<\ |

42/ 56

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i j
!
T = [T e b T [T TTT 11T B o [T [1]]
VH VH
v H v H
v v
i\ | ‘>/<\ |
a — va —

I
I

43/56

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars
i J
!
T = [T EEEEEEEEEEEE P T T T T T T T T T TR Y [TTTTTTTTT]
VH VH
v H v H
v v
\Q\ | ‘>/<\ |
v — 4 —
: H : H

44/56

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

i j
!
T = (1] e T 1T 1T 1] | e [TT [T
VH VH
v H v H
v v
i\ | ‘>/<\ |
v — 4 —
X — X 1
v H 7 H

45/56

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every 7’th position in T.

Blocks of 7 chars

b\]
I

[TTIITTTTT]

8]
"

AXAXARAS H
CXAXARAS

T
1

Analysis
Time: Only O(log(*F)) fingerprint comparisons each taking time O(7).

Hence query time O (7 log (X¢£)).
Space: O (Z).

46/ 56

A Randomized Solution (Las Vegas)

Question: Can we verify that ¢ is collision free during preprocessing?

47/ 56

A Randomized Solution (Las Vegas)
Question: Can we verify that ¢ is collision free during preprocessing?

Challenge: Doing this quickly while using O(%) space.

48/ 56

A Randomized Solution (Las Vegas)
Question: Can we verify that ¢ is collision free during preprocessing?
Challenge: Doing this quickly while using O(%) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[j7...jr + 7 - 2¢ — 1] for some /,j

A Randomized Solution (Las Vegas)
Question: Can we verify that ¢ is collision free during preprocessing?
Challenge: Doing this quickly while using O(%) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[j7...jr + 7 - 2¢ — 1] for some /,j

... this cuts down the number of fingerprints we need to check!

A Randomized Solution (Las Vegas)
Question: Can we verify that ¢ is collision free during preprocessing?
Challenge: Doing this quickly while using O(%) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[j7...jr + 7 - 2¢ — 1] for some /,j

... this cuts down the number of fingerprints we need to check!

General idea: For each ¢ > 0 in increasing order, check that for all i, j,

H(Tli...i+ 72" = 1)) = ¢(Tfjr...jr+72° - 1))
iff Tli...i+72°-1] = Tfr...jr+72°-1]

o(Tfi...i+7-2"~1])
T = (T T T T T OO

A Randomized Solution (Las Vegas)
Question: Can we verify that ¢ is collision free during preprocessing?
Challenge: Doing this quickly while using O(%) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[j7...jr + 7 - 2¢ — 1] for some /,j

... this cuts down the number of fingerprints we need to check!

General idea: For each ¢ > 0 in increasing order, check that for all i, j,

H(Tli...i+ 72" = 1)) = ¢(Tfjr...jr+72° - 1))
iff Tli...i+72°-1] = Tfr...jr+72°-1]

H(Tli...i+7-24=1)) =(Tfjr...jr+7-2°—1])
T = [T T T T T T LTI T T e [T T T 1T

A Randomized Solution (Las Vegas)
Question: Can we verify that ¢ is collision free during preprocessing?
Challenge: Doing this quickly while using O(%) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[j7...jr + 7 - 2¢ — 1] for some /,j

... this cuts down the number of fingerprints we need to check!

General idea: For each ¢ > 0 in increasing order, check that for all i, j,

H(Tli...i+ 72" = 1)) = ¢(Tfjr...jr+72° - 1))
iff Tli...i+72°-1] = Tfr...jr+72°-1]

H(Tli...i+7-24=1)) =(Tfjr...jr+7-2°—1])
T = [T T T T T T T T T T Ie TT T T]
(Tli...i+7-201—1]) = @(Tfir...jr+ 7271 —1])

A Randomized Solution (Las Vegas)
Question: Can we verify that ¢ is collision free during preprocessing?
Challenge: Doing this quickly while using O(%) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[j7...jr + 7 - 2¢ — 1] for some /,j

... this cuts down the number of fingerprints we need to check!

General idea: For each ¢ > 0 in increasing order, check that for all i, j,

H(Tli...i+ 72" = 1)) = ¢(Tfjr...jr+72° - 1))
iff Tli...i+72°-1] = Tfr...jr+72°-1]

H(Tli...i+7-24=1)) =(Tfjr...jr+7-2°—1])
U NRNNNRNNNRNNNNENEN] INNNNNNNNNNNENNNNNNES NNNEEEEEEN
H(Tli+7-271 i+ 7-20-1))
L G(Tlir +7-2¢71 . jr4+7-20 - 1))

Conclusions

We gave three time-space trade-offs for LCE on a single string:

» A deterministic solution
» O(7) query time
» O(n/+/7) space (even during preprocessing)
» O(n*/+/T) preprocessing time

» A Monte-Carlo solution
» O (7log (LCE(i,j)/7)) query time (correct with high prob.)
» O(n/7) space (even during preprocessing)
> O(n) preprocessing time.

» A Las-Vegas solution

» O (7log (LCE(i,j)/7)) query time (correct with certainty)
» O(n/7) space (even during preprocessing)
» O(nlogn) preprocessing time with high prob.

Conclusions

We gave three time-space trade-offs for LCE on two strings:

» A deterministic solution
» O(7) query time
» O(n/T +m/+/7) space (even during preprocessing)
» O(nm/+/T) preprocessing time

» A Monte-Carlo solution
» O (7log (LCE(i,j)/7)) query time (correct with high prob.)
» O((n+ m)/7) space (even during preprocessing)
> O(n) preprocessing time.

» A Las-Vegas solution

» O (7log (LCE(i,j)/7)) query time (correct with certainty)
» O((n+ m)/7) space (even during preprocessing)
» O(nlogn) preprocessing time with high prob.

